Российская академия наук Институт синтетических полимерных материалов им. Н.С. Ениколопова

А.М. Музафаров

"Дендримеры и другие макромолекулы-частицы как объекты нанотехнологий и наноматериалов"

Макромолекулярные нанообъекты

ADVANCES IN SILICON SCIENCE

Series Editor J. Matisons Volume Editors P. Dvornic · M. J. Owen

Silicon-Containing Dendritic Polymers

HIGHLIGHT

From the Discovery of Sodiumoxyorganoalkoxysila to the Organosilicon Dendrimers and Back

Polymer Data Handbook

Second Edition

EDITED BY James E. Mark

AZIZ M. MUZAFAROV, EVGENIJ A. REBROV N.S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Moscow 117393, Russia

Received 4 April 2008; Accepted 7 April 2008 DOI: 10.1002/pola.22795 Published online in Wiley InterScience (www.interscience.wiley.com).

ABSTRACT: Upon being dis-	functional groups, the well con-	conclusion, we showed the moti-		
covered 20 years ago, sodiumox-	trolled chemistry of their transfor-	vation for further development of		
yorganoalkowysilanes became the	mations, and the interfaces of the	this area both in regard of synthe-		
key to the world of organoele-	molecular skeleton are the reason	sia of new carbosilane systems		
ment dendrimers. Even consider-	for making these systems highly	and further development of silox-		
ing the great variety of objects	actual in two main regards: as	nne dendrimers. 0 2008 Winy Panod		
that had appeared in this area	model objects for the deep	icals, Inc. J Folym. Sci. Part A: Pdym		
during the last 20 years, the	research of the dendrimen's pro-	Chart 64: 6915-6948, 2008		
organosilicon dendrimers are still one of the most actual objects in this class. Above all, this is fair concerning the carbosilane sys- tems. The high reactivity of the	perties and as polyfunctional matrixes for numerous deriva- tives. In this review, we were mainly focusing on the impor- tance of the former part. In the	Keywords: dendrimens; glass transition; heteroatom-containing polymens; hyperbranched; net- works; polysiloxanes		

Professor A.M. Muzafarov graduated from Andrianov Chair of Moscow Institute of Fine Chemical Technology in 1973, obtained his Ph.D. in 1981 with Professor A.A. Zhdanov, on the subject of high functional organosition oligomers and thermostable polymers. He achieved his Dr. of Chemistry degree in 1997 on the subject of Organosition dentimers and hyperbranched systems. In 1998 together with B.A. Rebrov, he received S.V. Lebedev Award of Academy Sciences of Russia for the investigation of organosition dendrimers and hyperbranched systems. From 1996 op till now he is the Head of the

AZIZ M. MUZAFAROV

Correspondence to: A. M. Muzafarov (E-mail: aziz@ispm.ru) Journal of Palymer Science Part A: Palymer Chemistry Vol. 46, 4905–4945(2003) 42003 Wiley Partodicals, Inc.

4935

OXFORD 2009

Классификация полимеров по структуре основной цепи

Ι	II	III	IV
линейные	сетчатые	разветвленные	макромолекулы- частицы
R	A A A		H++++++
			• Дендримеры • Сверхразветвленные полимеры • Молекулярные щетки • Многолучевые звезды • Нано- и микрогели

Граничная поверхность:

$$S=4\pi r^2$$

Количество функциональных групп:

Сверхразветвленные полиаллилкарбосиланы

Inorganic dendritic structure

Figure 14. Molecular brushes with poly(n-butyl acrylate) side chains of different degrees of polymerization: (a) n = 52 and (b) n = 10.

1

Dendrimers can be considered the most versatile, compositionally & structurally controlled synthetic nanoscale building blocks available today

STM image of the 9-th generation of Carbosilane dendrimer on mica

ISPM RAS

Hexane solution of carbosilane dendrimer Filled by cobalt oxide(II)

Figure 5. Representation of dendrimer growth by the divergent and convergent methods.

E.A.Rebrov, A.M.Muzafarov, V.S.Papkov, A.A.Zhdanov Volume-groving polyorganosiloxnes

Doklady Chemistry, USSR, 1989, v. 309, №2, p. 376

Divergent scheme of carbosilane dendrimers synthesis

ISPM RAS

A.Muzafarov, O.B.Gorbatsevich, E.A. Rebrov, G.M.Ignat'eva, T.B.Chenskaya, V.D.Myakouchev, A.F.Bulkin, V.S.Papkov **"Organosilicon dendrimers. Volumegroving polyallycarbosilanes"** Polymer Science, 1993,vol. 35A, No 11, p.1867.

Synthesis of functional and non-functional derivatives of carbosilane dendrimers

E. Tatarinova et all, Russ. Chem. Bull. 2004, 53(11), 2591

Гомологические ряды карбосилановых дендримеров

3-3

4 - 3

4 - 4

Зависимость характеристической вязкости растворов карбосилановых дендримеров

Зависимость плотности карбосилановых дендримеров от номера генерации

полибутилкарбосилановых дендримеров 3-9 генераций Дендри ΔТ, К Т_g°, К мер **G-3(Bu)** 174-186 179 ± 1 **G-4(Bu)** 181-195 186 ± 1 **G-5(Bu)** 177-195 186 ± 1 G-6(Bu)178-196 186 ± 1 **G-7(Bu)** 178-196 186 ± 1 **G-9(Bu)** 174-204 187±1

Зависимость темплоемкости

от температуры образцов

N.N. Smirnova et all. Thermochimica Acta. 2006. V.440. P.188-194

N.N. Smirnova et all. Russ. Chem. Bull. 2007. in print

Fluorocarbon Derivatives of Carbosilane Dendrimers of High Generation

Doklady of Chemistry RAS 2005.Vol.403.№5

N.A.Shumilkina, V.D.Miakouchev, E.A.Tatarinova, M.O.Galyamov, A.R.Khokhlov, A.M.Muzafarov

1- SAXS plot G-7 (polyallylcarbosilane dendrimer)

2- theoretical scattering curve of sphere like particle with Rg= 2.3 nm

Solvent quality

Tg>T разл.

Polymer Science, 2000, ser. A, Vol. 42, No6, p.610-619

Kabanov V.A., Zezin A.B., Rogacheva V.B., Gulyaeva Zh.G., Zansochova M.F., Joosten J.G.H., Brackman J. Interaction of Astramol poly(propyleneimine) dendrimers with linear polyanions//Macromolecules, 1999, v. 32, № 6, p.1904-1909.

Scheme of step by step nanoclusters formation within dendrimer molecule

Prof. Crooks R. M., USA

Dr. Balogh L. USA

Synthesis, characterization, and catalytic activity of bimetallic palladium-platinum dendrimerencapsulated catalysts (DECs). These materials are prepared by co-complexation of different ratios of palladium and platinum salts to the interior tertiary amines of fourth-generation, hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimers. Chemical reduction of these composites yields stable, fairly monodisperse, water-soluble bimetallic DECs having sizes on the order of 1.9 ± 0.4 nm. Evidence that these nanoparticles are bimetallic comes from single-particle X-ray energy dispersive spectroscopy (EDS) and catalysis experiments. The latter indicate that the hydrogenation rate of allyl alcohol is enhanced in the presence of the bimetallic nanoparticles compared to DECs containing only platinum or only palladium nanoparticles. EDS results indicate that the percentage composition of the bimetallics is reflected by the percentage of metal salts initially complexed with the dendrimer. *J. Am. Chem. Soc.*, **2003**, **125** (*13*), pp 3708–3709

The synthesis and magnetic properties of Ni nanoparticles containing <150 atoms are described. These materials are prepared in an organic solvent using hydrophobic dendrimers as templates, which results in a high degree of size monodispersity. The dendrimer-encapsulated nanoparticles were characterized by UV-vis spectroscopy, transmission electron microscopy, and energy dispersive spectroscopy. Magnetic (SQUID) studies indicate that the particles are ferromagnetic at 5 K with magnetic saturations that vary depending upon the particle size.

Chem. Mater., 2006, 18 (21), pp 5039-5044

Model of dendrimer matrix with active inner sphere

Merits:

Dendritic clasters are monodispersed Clasters are stabilized by dendritic structure Possibility of claster localization inside molecule

A + B → AB

DB= T+D/ T+D+L

Первый и второй способы получения гибридных наночастиц на основе сверхразветвленного полиэтоксисилоксана и силиказоля.

Scanning force photomicrograph of silica-sol on mica

Третий и четвертый способы получения гибридных наночастиц на основе тетраэтоксисилана в кислой и щелочной средах.

W. Stober, A. Fink, E. Bohn. Controlled Growth of Monodisperse Silica Spheres in the Micron size Range. // J. Colloid Interface Sci. 1968, V.26, P.62-69

Гидродинамические свойства наночастиц.

Наночастицы на основе полиэтоксисилоксана (первый метод синтеза).

Наночастицы на основе силиказоля (второй метод синтеза).

Образец № фракции	М, универсальная калибровка	R, нм (ГПХ) ТГФ	R, нм (ДСР) Толуол	R, нм (ДСР) МТБЭ	η(Толуол), дл/г	η(МТБЭ), дл/г
II-1	511000±51000	8,3±0,8	8,0±0,4	10,2±0,5	-	0,072±0,004
II-2	390000±40000	6,9±0,7	7,0±0,4	8,9±0,4	0,055±0,003	0,059±0,003
II-3	220000±22000	5,4±0,5	5,2±0,3	6,7±0,3	0,047±0,002	0,055±0,003
II-4	93000±9000	3,8±0,4	3,6±0,2	4,4±0,2	0,037±0,002	0,041±0,002
II-5	25000±2500	2,4±0,2	3,3±0,2	3,5±0,2	-	-
II-6	11500±1700	1,5±0,2	1,1±0,1	1,5±0,1	0,017±0,001	-
II-7	5000±1000	1,0±0,1	-	1,2±0,1	0,014±0,001	-
II-8	2400±500	0,7±0,1	-	<1	0,012±0,001	-

Наночастицы на основе тетраэтоксисилана (третий метод синтеза).

Образец	М,	R, нм	R, нм	R, нм	η(Толуол),	η(МТБЭ),
№ фракции	универсальная калибровка	(ГПХ) Толуол +2 %ТГФ	(ДСР) Толуол	(ДСР) МТБЭ	дл/г	дл/г
III-1	116100±12000	4,5±0,5	4,9±0,2	5,8±0,3	-	0,053±0,003
III-2	61000±6100	3,4±0,3	3,1±0,2	3,8±0,2	-	0,044±0,002
III-3	26800±2700	2,5±0,3	2,1±0,1	3,1±0,2	0,042±0,002	0,042±0,002
III-4	13450±1300	1,8±0,2	1,4±0,1	2,4±0,1	0,033±0,002	0,033±0,002
III-5	8300±1200	1,4±0,2	<1	1,8±0,1	-	-
III-6	7300±1200	1,1±0,2	<1	1,3±0,1	0,019±0,001	0,023±0,001
III-7	3300±700	0,8±0,2	<1	1,0±0,1	0,017±0,001	0,023±0,001

Определение температуры стеклования.

Частицы на основе полиэтоксисилоксана

Частицы на основе тетраэтоксисилана в кислой среде (метод 3)

Частицы на основе силиказоля (метод 2)

Образец	М	SiO ₂ : (CH ₃) ₃ Si	Tcr,⁰C
I-2	59300	1:0,73	>Тразл
I-7	4500	1:1,2	-60
II-4	93000	1:0,5	>Тразл
II-8	2400	1:1	0
III-2	61000	1:0,6	>Тразл
III-7	3300	1:1,1	-40

Изотермы монослоёв модифицированных кремнеземных частиц на основе тетраэтоксисилана

Изотермы поверхностного давления фракций кремнеземов а)2-3; б)2-2; в)2-1; г)3-1

Модели макромолекулы и частицы.

Макромолекула

-молекулярная структура обладает определенной подвижностью (Тст. <Тразл.)

- полностью сольватируется растворителем

Частица

- сольватируется только поверхностный слой - ядро жесткая – частосшитая сетка (Тст.>Тразл.)

Рентгеновская дифракция в области больших углов

Основной рефлекс α-кварца	Силикагель (кислая среда)	Силикагель (Стоубер)	Аэросил А-300
26,5	24,55	23,3	22

«Полиэтоксисилоксановое» ядро – триметилсилильная оболочка

(образцы по методу 1)

Молек.масса	Т _{ст}	Содержание SiO ₂ , %	SiO ₂ :Me ₃ Si
59300	>Т _{разл}	33	1:0,73

Силиказольное ядро – триметилсилильная оболочка

Молек. масса	Тст С	Содержание SiO ₂ , %	SiO ₂ :Me ₃ Si
2400	0	31,4	1:1
220000	>Т _{разл}	41	1:1,5

49

Ядро из «тетраэтоксисилана» – триметилсилильная оболочка.

(образцы по методу 3)

Свойства гибридных наночастиц.

Из полиэтоксисилоксана (первый метод синтеза)						
Nº	состояние	Тст, С				
I-1-I-3	ч	34700-152000	2-5,3	Тст>Тразл		
I-4	М-Ч	21500	1,7-2	Тст>Тразл		
I-5	М	12600	1-1,4	160		
I-6	М	6650	1	-5		
I-7	М	4500	<1	-60		

Из силиказоля (второй метод синтеза)			Изт	етраэтоксис	илана (тр	етий мето	од синтеза)		
Nº	состояние	M.M	R, nm	Т стекл	Nº	состояние	M.M	R, nm	Т стекл
II-1- II-5	Ч	25000- 512000	2,4-10,2	Тст>Тразл	-1- -3	ч	26800- 116100	2,1-5,8	Тст>Тразл
II-6	М-Ч	11500	1,1-1,5	Тст>Тразл	III-4	М-Ч	13450	1,4-2,4	Тст>Тразл
II-7	М	5000	1-1,2	160	III-5	М	8300	1-1,8	170
II-8	М	2400	<1	0	III-6	М	7300	1-1,3	150
II-9	М	-	<1	-80	III-7	М	3300	<1	-50

Синтез кремнезема с 2-фенилэтильными группами для создания нанокомпозитов на основе полистирола.

полистирол ~CH₂-CH~

Получение нанокомпозитов на основе полистирола.

54

D Gao, Z Zhang, M Wu, C Xie G Guan, and D Wang A Surface Functional Monomer-Directing Strategy for Highly Dense Imprinting of TNT at Surface of Silica Nanoparticles. // J. Am. Chem. Soc. 2007, 129, 7859-7866

SFM micrographs of monolayers of pnBA brushes (sample A in Table 5) transferred on mica at different degrees of compression: (a) 30 Å2, (b) 23 Å2, (c) 21 Å2, (d) 17 Å2, (e) 13 Å2, (f) 30 Å2 (after expansion).

Fig. 16. Brush molecules change from (a) flexible to (b) rod-like conformation with increasing degree of polymerization of side chains n.

Adsorption-induced degradation of macromolecules. a, The molecular degradation of brush-like macromolecules with long side chains (n ¼ 140) on mica was monitored using AFM height imaging after each sample was exposed for different time periods (as indicated in the images) to a water/propanol (99.8/0.2wt/wt%) substrate.

Заключение

- Совокупность молекулярных нанобъектов можно рассматривать как своеобразный конструктор для создания наноматериалов и наноустройств.
- Потенциал практического применения молекулярных нанообъектов самым непосредственным образом зависит от глубины нашего понимания взаимосвязи структура - свойства для каждого из типов нанобъектов, которое, в свою очередь, подразумевает огромную работу по синтезу новых объектов и последовательному изучению их свойств