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 Introduction: Ab initio methods 

T.B. Grimley, Prog. Surf. Membr. Sci. 9, 71 (1975) ,    , wrote some 37 years a clear definition 
of ab initio methods: 

……………………………….. 
   …..ab initio………. 

………………...... 

  Use the exact Hamiltonian for atomic,  
        molecular or solid systems within  
       the Born-Oppenheimer approximation:    

Prog. Surf. Membr. Sci. 9, 71 (1975) 

Thomas  B. Grimley, 
University of Liverpool 

(UK) (1923- ) 

atomic units 



. 
 

    Determine the ground state of the system by the variational principle  
  by using  an N-electron  anti-symmetric wavefunction , which results          
  into solving a Schrödinger  equation. 

 
    Crucial factors : 
 
      Development of theoretical concepts and numerical methods to obtain    
  an  approximate wavefunction Ψ so that the binding and barrier  
  energies are worked out close to chemical accuracy,  defined as   
         1 kcal/mol = 43 meV.        

 
   Improvements in computational hardware. 
 
   Improvements in computational software 

 
   Novel theoretical concepts, as it was density functional theory    

  compared to  wavefunction based methods. 



Hartree- Fock (HF) method 

    The self-consistent electron-electron  potential energy 
 (Hartree  approach)   was introduced first by Hartree  
 in 1928. 

 
   Slater showed that Hatree’s equation could be derived 
 variationally (1928) 

 
   Fock pointed out that the wavefunction has to be anti-
 symmetrized   leading to the exchange term (1930). 

 
 

Vladimir Aleksandrovich Fock 
St. Petersburg (1898-1974) 

//upload.wikimedia.org/wikipedia/commons/e/ed/FockVA20469.jpg
http://en.wikipedia.org/wiki/File:Saint_Petersburg_State_University_logo.jpg
http://en.wikipedia.org/wiki/File:SaintPetersburgUniversity.jpg


Single Slater determinant as approximate anti-symmetric electron wavefunction 

;    q=r,σ 

Energy functional: 

     One particle;                           Hartree-classical-direct;       Exchange term 

Variational condition imposing orthonormality of wavefunctions: 

 ελ  are Langrange multipliers 



Hartree-Fock equation: 

Self-consistent equation whose potentials can be written after defining the first order 
spinless density matrix: 

Hartree potential 

Exchange potential 

One obtains the ground state 
total energy as: 



Hartree-Fock properties: 

Self-interaction cancels exactly 
  
Koopman’s theorem:  The eigenvalue of the spin-orbital  uλ is the ionization 
energy of such electron, if  no electronic rearrangement occurs between the 
systems with N and (N-1) electrons. 
 
 
 
Practical solutions are obtained by expanding the spin orbitals on a basis set 
(BS)  as a linear combinationon of a finite number (P>N) of basis set functions: 
 
 
 
 
Wavefunctions:    Plane waves         
 
                              Slater          
 
                              Gaussian         



Defining the Fock operator: 

One can solve a matrix equation:              FC = ε SC 
 
obtaining  the so called Hartree-Fock-Roothan equation, in which the 

overlap matrix  S can be diagonalized by unitary transformation  and the 

solution found self-consistently 

 
The main limitation of the HF method is the lack of correlation energy, defined as 
 
         ; 
 

In HF one electron moves in the average field of the other electrons so that 
electron movements are not correlated to each other. 
 
Opposite spin correlation  not considered. 
 
Excited states poorly described 
 
  
 



Configuration interaction (CI)) 

The N-electron basis functions  can be written  as  excitations   from the HF  
ground state wavefunction,  where          means a Slater determinant formed by 
replacing the occupied spin-orbital  |j>   in            with  virtual spin orbital  |a>, 
namely: 

Some of the occupied N orbitals are substituted by M-N=H  virtual orbitals.  

The full CI corresponds to solving Schrödinger's equation exactly within 
the space spanned by the selected one-electron basis.  

The CI method can be expressed variationally so the calculated lowest 
energy eigenvalue is always an upper bound to the exact ground state 
energy. 
 
The disadvage of the method is that it is not size-extensive. 



Coupled cluster (CC) theory 

CC can be explained in a diagrammatic way, e.g. similarly to Goldstone theorem,  
which shows cancellation of disconnected diagrams 

J. Goldstone, Pr.R.Soc. A 239, 267 (1957) 



Size extensivity 

E(AB)=E(A)+E(B),               RAB   ∞ 

H(AB) Ψ(AB)=[H(A)+H(B)] |AB>=[E(A)+E(B)]|A>|B> 
 
|AB> = exp [T(A)+T(B)]|A0B0> = exp[T(A)]|A0>exp[T(B)]|B0> 

Exact wavefunction  from a exponential operators guaranted by evaluating only  
linked diagrams 



J. Čížek, JCP 45, 4256 (1966) 
G.D, Purvis and R.J. Bartlett, JCP 76, 1910 (1982) 
J. ČR.J. Bartlett and M. Musial, RMP 79, 291 (2007) 



Eventually one has to solve a non-linear system of equations for the coefficients  
to be solved iteratively. 

Unlinked diagrams cancel 
 

Diagrams, which guarantee size  size 
extensivity, are considered 
differently from trunkated CI 
 

Wavefunction in closed form 

CC is applicable to infinite systems.  
Correct relative energies on PES.  

cost 

N6 

N8 
N10 
N12 



Density functional theory (DFT) 

P. Hohenberg and. W. Kohn, PR 136, 864 (1964) 

HK Theorem 1 

HK Theorem 2 

Kohn-Sham scheme 

For any interacting system there exists a local single particle potential   
such  that  the exact ground state charge density  equals the ground state density of  
the auxiliary problem: 

 
     

W. Kohn and L. Sham, PR  140, A1133 (1965) 

R. M. Dreizler and E.K:U Gross, DFT, Springer-Verlag (1990) 

Walter Kohn, 

Vienna (1923-) 



Kohn-Sham functional 

 is the non-interacting particle kinetic energy functional: 

is defined as the exchange correlation functional 

The minimization can be performed on an auxiliary functional          and in the space  
of the orbitals {|       > },   subject to the orthonormality condition: 



The variation of the  functional              in  terms  of             can be expressed in  
terms of the various             which, for real spin orbitals, amounts  to the equation: 
 

From                         after some manipulation, we obtain the Kohn-Sham equation: 
 

We can introduce the Kohn-Sham operator as 
 
 
 
and write: 



The total energy can be written as: 

The complexity of the problem is now shifted to the term     which contains  
both the quantum interaction among the electrons and the difference  term     
The KS approach computes the kinetic energy         via the KS auxiliary orbitals,  
However, recall  that  already for Be                                  . 

Main conclusions on the DFT-KS method 

The single particle KS equations are similar to the HF ones. They can be solved 
self-consistently by an expansion of the orbitals on a suitable basis set. The non 
local exchange term is absent in the KS scheme  since    is a local potential. 

G.P. Brivio and M.I. Trioni, RMP 71, 231 (1999) 



The KS approach is exact: the problem regards the exchange-correlation functional. 
Various approximations are proposed for it. See the following. 
 
Similar to the unrestricted HF method, the KS approach can be extended  to magnetic  
systems. In this case 
 
The KS orbitals have no particular physical meaning. They are a tool to obtain the 
exact  charge density                             but not the exact wavefunctions. 
 
The KS eigenvalue are only Lagrange multipliers (no Koopman theorem exists in DFT) 
although they are often a good approximation to the orbital energies. 
 
The success of the KS method is mainly due to easier  computational  implementations 
for larger systems than those of the HF approach and its derived methods.  Also the 
charge density is an intuitive experimental measurable quantity,  differently from the 
 wavefunctions in HF.  
 
Excited states are outside the reach of DFT and consequently cannot be determined  
a fortiori by the KS eigenvalues of the unoccupied states. 
 



The local density approximation (LDA) 

Following the results for the homogeneous electron gas (HEG) and a similar approach  
to the Thomas-Fermi functional, we approximate the exchange-correlation  functional  
by: 

Where      is the exchange-correlation energy per particle  in HEG  
 
whose  density  is  defined to be that appropriate to the position  r , namely: 

The spin dependence can be easily introduced in the KS scheme, and the local spin  
density approximation (LSDA) functional is: 
 



The self-interaction correction 

The correct  number of couple interactions  for a system of N electrons is given 
by N(N-1)/2 and for an extended system largely overcomes that of the electron self- 
interaction (SI) proportional to N. But for an atom or a molecule , the SI is a relevant 
correction. 
In HF the SI is correctly zero, but in DFT the classical functional    contains 
N/2 spurious interactions. 
 
Perdew and Zunger  suggested a modified exchange functional 
to subtract spurious terms for each orbital 

J.P.  Perdew (1943- ) 
J.P. Perdew and A. Zunger, PRB 23, 5048 (1981)) 

Today  with advent  
of new and hybrid  
functionals the SIC is  
usually ignored 



Fractional occupation number 

We start first with the Euler variational equation  of the energy functional with  
respect to the particle   number  N 

A proper extension of the density to a fractional number of electrons  (from a grand 
 canonical ensemble)  is given by: 

Such density may integrate to a non integer number. 
The corresponding energy is a straight line segment with derivative discontinuities  
at integer N: 

By this approach one can prove that the Lagrange multiplier is the chemical potential 

J.P. Perdew et al, PRL 49, 1691 (1982)) 



This is the equivalent of Koopman’s theorem for DFT and gives the value of the  
ionization potential of the system, 

J.P. Perdew and M. Levy, PRB 97, 16021 (1997) 

Janak’s Theorem 

J.F. Janak, PRB 18, 7165 (1978) 

Consider a fractional occupation         of the spin orbitals and define the density as: 

Also the energy and the orbitals are functions of  and one can prove that: 



 
 

Janak’s theorem can be used to evaluate ab initio photoemission (XPS) energies  by a 
method closely related to Slater’s transition-state theory.  
We assume that the total energy of the system with fractional        electrons removed 
from the level |i> is given by the power expansion: 

G. Fratesi et al, PRB  78, 205111 (2008) 

KS 

KS 

EXPS Expt 

Supercell calculations 



LDA+U 

It allows a treatment of strongly correlated 
systems. The LDA+U functional is adapted from 
the Hubbard model selecting a number of 
localized orbitals whose electronic correlation is 
described in a specific way: 

V. Anisimov et al, PRB 44, 943 (1991) 

M. Cococcioni and S. de Gironcoli, PRB 71, 035105 (2005) 

The curvature of the LDA energy is associated  
with the spurious self-interaction of fractional 
electrons introduced in the system and  
is amended by U. 

U by DFT 

empirical U 

metallic cerium 

FeAl 

P. Mohn et al, PRL 87, 196401 (2001) 



Beyond LDA: the GGA approach 

Some non-locality was first introduced in exchange correlation functional by a gradient 
expansion of the density (GEA).  
 
Then the generalized gradient approximation (GGA) was proposed to set physical 
constraints on the exchange and correlation holes, satisfied by the uniform electron 
gas (LSDA) but not by GEA, obtaining much improved results. 
.  

J.P. Perdew, PRL 55, 1665 (1985) 

K. Burke, JCP 136, 150901 (2012) 



 
 
The PBE functional is based on PW91, but avoiding cumbersome features. It contains a  
unified real space cutoff  for  exchange  and correlation holes to avoid spurious long  
range parts in the second order gradient expansion of density.  PBE does not have any 
fitting parameters, retains correct  features of  LSD, combines them with the most  
energetically important features of  gradient-corrected nonlocality. 

PBE functional 

J.P. Perdew, K. Burke and M. Erzenhof, PRL 77, 3865 (1996) 



B3LYP functional 

This is a so called GGA hybrid functional since inclusion of the exact exchange 
determines a non-local potential in the KS equation.    expressed in terms of KS 
orbitals. 

Gradient correction to exchange 

B88 exchange and correlation by gradients of HF second order density matrix 
 and of the local kinetic energy 

Adapted from the random phase approximation (RPA) for a uniform 
electron gas in the high density limit 

The three parameters have been taken to reproduce a set of atomization energies, 
ionization potentials, proton affinities, and total atomic energies. 
The mixed character of this functional is probably one of the reasons for its success. 

O. Salomon et al, JCP 117, 4729 (2002) A,D. Becke, JCP 98, 1372 (1993) 



C, H, S, N, O 

Alliin molecule 

From Turin University website 

HOMO LUMO 

Electron total density surface Electron total density surface coloured by ESP 



Van der Waals (VdW) (dispersion) interaction 

vdW is fundamental in several fields: atoms, molecules, solid state, chemistry, biology 

Dispersion  (London) forces are exhibited by nonpolar molecules because of the 
correlated motion of the electrons in interacting molecules. For this reason, the 
electron density in a molecule becomes redistributed in proximity to another molecule. 
This is frequently described as formation of  "instantaneous dipoles" . 

R 



For materials two approaches are considered for the vdW interaction: 
 

 Non-local functionals 
 

 Interatomic methods  

Size and accuracy 



M. Dion et al, PRL 92, 246401 (2004) The LL approach 

Seamless DFT approach. Polarization  expressed in terms of a  
local dielectric function within RPA:  

Binding distance 5-10% too long 
 
Binding energy too low 50% 

Benzene-benzene interaction 

Bengt Lundquist 
Chalmers University, 
Sweden 

David Langreth, 
1937-2011 



S. Grimme, J. Comp. Chem. 27, 1787 (2006) 

Semiempirical Becke’s GGA B97-D  (energy functionals with gradient contributions 
expanded up to second order),  parameterized by including damped  atom-pairwise  of 
the form: C6 R

-6 obtained  by suitably  fitting the experimental data. 
 
 
Later the vdW correction (DFT-D3(BJ) (also with a term proportional to C8 R

-8 ) 
optimized  to several  GGA functionals. 
 

 

Semi-empirical methods  

A.D. Becke, JCP 107, 8554 (1997) 

S. Grimme et al  J. Comp. Chem. 32, 1456 (2011) 

Interatomic methods 

Fritz London, 
Breslau, 1900-54 



The TS method 

A. Tkatchenko and M. Scheffler, PRL 102, 073005 (2009) 

To compute the vdW interaction on firmer grounds C6 and R0 are derived from  
the electron density of a molecule or a solid (by DFT-GGA) and accurate reference  
data for the free atoms.  
Pairwise summation of C6 for a molecule 
One parameter in the damping function 
Later long range electron screening in solids and molecules (PBE+vdW) 

A. Tkatchenko et al, PRL 102, 236402 (2012) C6/ H Bohr6  reference systems 

C6/ H Bohr6  



Conclusions 

First principle determination of many-electron system 
properties (mainly ground state): methods, achievements, 
questions. 

 
 

Excited states, apart from HF derived methods (CI,CC), 
require different approaches: 

 
 TDDFT (time-dependent external potential): Excited 

states to be determined by the poles of the density-
density correlation function 
 

 Many-body perturbation theory:  
 Single particle excitations by quasi-particle energy  
 Two particle excitation by the Bethe-Salpeter 

equation. 

G. Onida et al, RMP Grimme et al  J. Comp. Chem. 74, 601 (2002) 

E.K.U. Gross, MPI, Halle 
(Germany) 

A. Abrikosov, Moscow 
(1928- ) 
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