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T.B. Grimley, feee st s EEe e e ) , wrote some 37 years a clear definition
of ab initio methods:

The goal of
.....abinitio.......... theory is to determine for
ANY .o, system the equilibrium posi-

tions of all nuclei, the ground-state energy, the el-
ementary excitations, and the responses to external
probes using only the value of the fundamental con-
stants, e, m,, fi, and €; (the permittivity of free space).

Thomas B. Grimley, O Use the exact Hamiltonian for atomic,
molecular or solid systems within
the Born-Oppenheimer approximation:

H=Hy+ H+ e, “atomic units

University of Liverpool
(UK) (1923-)
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O Determine the ground state of the system by the variational principle
by using an N-electron anti-symmetric wavefunction , which results
into solving a Schrodinger equation.

U Crucial factors :
Development of theoretical concepts and numerical methods to obtain
an approximate wavefunction ¥ so that the binding and barrier
energies are worked out close to chemical accuracy, defined as
1 kcal/mol = 43 meV.
Improvements in computational hardware.

Improvements in computational software

Novel theoretical concepts, as it was density functional theory
compared to wavefunction based methods.



O The self-consistent electron-electron potential energy

(Hartree approach) was introduced first by Hartree
in 1928.

O Slater showed that Hatree’s equation could be derived
variationally (1928)

O Fock pointed out that the wavefunction has to be anti-
symmetrized leading to the exchange term (1930).

Quantum Mechanics
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Viadimir Aleksandrovich Fock
St. Petersburg (1898-1974)
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Single Slater determinant as approximate anti-symmetric electron wavefunction

D(q1, gaseunnn. qn) = ﬁz F‘ua (q1)ug(q)...... uy(qn) ;. g=re

Energy functional:  E[®] = Zf:ﬁ E [Jap — Kol ;

J-. =1
. 1 . 1
Iy =< Alhi|A >; Dy = (Au|—[An); Kxe = (Aul—[uA)
\ / \ ! J \ ! }
| |
One particle; Hartree-classical-direct; Exchange term

Variational condition imposing orthonormality of wavefunctions:

oF — ZE;.ILE < -1£-;|u; == 1)
A

g, are Langrange multipliers



Hartree-Fock equation:

hi + vp (1) — ve(g:i)] ur(@:) = exua(a)

Self-consistent equation whose potentials can be written after defining the first order
spinless density matrix:

p=1

rij

1
v (ri) Z/H-[I'j) —dr; Hartree potential

1
Uz (Gi)ua(Gi) = O e [/ n(rj. rj) — -

Uy (I‘J)dh} X1 m Exchange potential
ij -
One obtains the ground state

N
total energy as: EM (@] =) er— = Z [Jan — K
A=1 J-.,u—



Hartree-Fock properties:

Self-interaction cancels exactly
Koopman’s theorem: The eigenvalue of the spin-orbital u, is the ionization

energy of such electron, if no electronic rearrangement occurs between the
systems with N and (N-1) electrons.

Eny — En_1 =8

Practical solutions are obtained by expanding the spin orbitals on a basis set
(BS) as a linear combinationon of a finite number (P>N) of basis set functions:

IF.:'
uy = ) coathy
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Wavefunctions: Plane waves exp(ik-T)
Slater exp(— 1)

: X
Gaussian exrp|—ar”)



Defining the Fock operator:

F=H+J-K

One can solve a matrix equation: FC =¢SC

obtaining the so called Hartree-Fock-Roothan equation, in which the

overlap matrix S can be diagonalized by unitary transformation and the
solution found self-consistently

The main limitation of the HF method is the lack of correlation energy, defined as
Er:u:rrr' — Leract — E{EF Er:*u:rrr' < 0

In HF one electron moves in the average field of the other electrons so that
electron movements are not correlated to each other.

Opposite spin correlation not considered.

Excited states poorly described



The N-electron basis functions can be written as excitations from the HF
ground state wavefunction, where @E means a Slater determinant formed by
replacing the occupied spin-orbital |j> in &, with virtual spin orbital |a>,
namely:

‘IJLI—@D—I—ZCL@”—I— S CHeN+ .+ Y O ey

j=ia=h i=izka=b>e

Some of the occupied N orbitals are substituted by M-N=H virtual orbitals.

The full CI corresponds to solving Schrédinger's equation exactly within
the space spanned by the selected one-electron basis.

The CI method can be expressed variationally so the calculated lowest
energy eigenvalue is always an upper bound to the exact ground state
energy.

The disadvage of the method is that it is not size-extensive.



CC can be explained in a diagrammatic way, e.g. similarly to Goldstone theorem,
which shows cancellation of disconnected diagrams

o> 1 A"
E— Ey=< ‘1’[|.|le (E = H]) |‘I’D = connected

b g _ < Pl HiU(0,00)|P, >
T < B,|U(0, 00)| B >

A,0)

J. Goldstone, Pr.R.Soc. A 239, 267 (1957)
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E(AB)=E(A)+E(B), Rag %

H(AB) ¥(AB)=[H(A)+H(B)] |AB>=[E(A)+E(B)]|A>|B>

|AB> = exp [T(A)+T(B)]|A;Bo> = exp[T(A)]|A,>exp[T(B)][By>

—>

Exact wavefunction from a exponential operators guaranted by evaluating only
linked diagrams

Ve >= exp(T)|®g >; ZT T, = (n!)~? Z te-clel.....¢56

exp(—T)H exp(T) = H

E=<®|H|® > <& [Hl® >=0



Equivalence of CC and FCI

CC wavefunction CI wavefunction
W) = exp(T) |0} v = Co)
Ty |0) singly excited C |0)
1
(Iy + §T12 ) 10) doubly excited Cy [0)
1
(T3 + ToTy + ngs) |0) triply excited Cs |0)
(Ty + T3Ty + %TQQ quadruply excited Ca 0)
1T2T. LT [0
+olilz T 5 1) 10)

matching number of parameters

=>  (CC ansatz parametrizes the exact wavefuntion

J. Cizek, JCP 45, 4256 (1966)
G.D, Purvis and R.J. Bartlett, JCP 76, 1910 (1982)

J. CR.J. Bartlett and M. Musial, RMP 79, 291 (2007)




Accuracy of CC Methods

deviation from FCI (in mH) for CO

CI CC
SD 30.804 12.120
SDT 21.718 1.009
SDTQ 1.775 0.061
SDTQP 0.559 0.008
SDTQPH 0.035 0.002

calculations with cc-pVDZ basis, frozen core

E(FCI)=-113.055853 H



HK Theorem 1

R. M. Dreizler and E.K:U Gross, DFT, Springer-Verlag (1990)
Thus v(r) is (to within a constant) a unique functional
of n(r); since, in turn, v(r) fixes H we see that the full

P. Hohenberg and. W. Kohn, PR 136, 864 (1964)
many-particle ground state is a unique functional of

#(r). v(r) is an external potential n(r)is the ground state density
Walter Kohn,
Vienna (1923-)

HK Theorem 2
Fugn(r)] =< V|(T + VEE)|'1f >

UCSB PHOTO SERWCES

E,[n(r)] = /v(r}n(r)dr—l— Fyk|n(r)] = Vin(r)|+Fgk[n(r)]

has a minimum at the correct ground state density n, relative to arbitrary
variations of n subject to the constraint of fixed number of particles

Kohn-Sham scheme W. Kohn and L. Sham, PR 140, A1133 (1965)

For any interacting system there exists a local single particle potential vcss(r)
such that the exact ground state charge density equals the ground state density of
the auxiliary problem:



Jn]
Kohn-Sham functional

|
Exs|n] = Ts[n] + Vn] [/dldl ([e—r")n(r)n(r")+ Ey[n]

T,[n] Is the non-interacting particle kinetic energy functional:

L= Y [ )5 Viair = [ (3 V2n (e o) osds

- 2m

E..[n]| is defined as the exchange correlation functional
E..n] = Fuk|n] — J[n] — Ts[n]

The minimization can be performed on an auxiliary functional Q] and in the space
of the orbitals {|2i >}, subjectto the orthonormality condition:

Q] = Exsle] — Glel; Glel = Y a{< gilpi >}

i=1.N



The variation of the functional 4f2 in terms of dm  can be expressed in
terms of the various 0w; which, for real spin orbitals, amounts to the equation:

n—+on = Z |:‘,.:?i + ri'ii,::i|2 ~ n 4 2 Z Pi0w;
i=1.N 1=1,N

From §Q) [n] =0 after some manipulation, we obtain the Kohn-Sham equation:

1_.
[~3 V7 + () + v (] x) + wee([n] 1)) 1 = =i
|
Vess(r)
We can introduce the Kohn-Sham operator as

- 1
his = Evf + Veff(r)
and write:

hfi’SHw‘i — Eil



The total energy can be written as:

G.P. Brivio and M.I. Trioni, RMP 71, 231 (1999)

E[n]| = Z gi — J [n] 4+ Eze [n] —/-Uﬂ{r)ﬂ.[r}dr

i=1,N

Main conclusions on the DFT-KS method

The complexity of the problem is now shifted to the term F.c [n] which contains
both the quantum interaction among the electrons and the difference term T — T,

The KS approach computes the kinetic energy 1< via the KS auxiliary orbitais,
However, recall that already forBe T — 7. ~ 2.0 ¢V .

The single particle KS equations are similar to the HF ones. They can be solved
self-consistently by an expansion of the orbitals on a suitable basis set. The non
local exchange term Is absent in the KS scheme since v, ¢¢(r) IS a local potential.



The KS approach is exact: the problem regards the exchange-correlation functional.
Various approximations are proposed for it. See the following.

Similar to the unrestricted HF method, the KS approach can be extended to magnetic
systems. In this case % £ v

The KS orbitals have no particular physical meaning. They are a tool to obtain the
exact charge density n.(r) = n(r) but not the exact wavefunctions.

The KS eigenvalue are only Lagrange multipliers (no Koopman theorem exists in DFT)
although they are often a good approximation to the orbital energies.

The success of the KS method is mainly due to easier computational implementations
for larger systems than those of the HF approach and its derived methods. Also the
charge density Is an intuitive experimental measurable quantity, differently from the
wavefunctions in HF.

Excited states are outside the reach of DFT and consequently cannot be determined
a fortiori by the KS eigenvalues of the unoccupied states.



The local density approximation (LDA)

Following the results for the homogeneous electron gas (HEG) and a similar approach
to the Thomas-Fermi functional, we approximate the exchange-correlation functional

by:
E..[n] ~ pLbA n(r)] = /dr €ze (n(r))n (1)

Where e..(n(r)) Isthe exchange-correlation energy per particle in HEG

whose density Is defined to be that appropriate to the position r, namely:

TI{I) _ n_HEG

The spin dependence can be easily introduced in the KS scheme, and the local spin
density approximation (LSDA) functional is:

phabA n| = Z Z Sig—J [-n“L }—I—}f}‘r‘“&“‘:“1 n* Z/ ”L554 J’snT])nJ(r)dr

o i=1,N

n— ni“ + n.T



The self-interaction correction

The correct number of couple interactions for a system of N electrons is given

by N(N-1)/2 and for an extended system largely overcomes that of the electron self-
Interaction (SI) proportional to N. But for an atom or a molecule , the Sl is a relevant
correction.

In HF the Sl is correctly zero, but in DFT the classical functional ~.J[n] contains
N/2 spurious interactions.

Perdew and Zunger suggested a modified exchange functional
to subtract spurious terms for each orbital

ESCn] = B, [n] — Z (J [ni] + E [ni])

i=1,N '
.P. Perdew (1943-
J.P. Perdew and A. Zunger, PRB 23, 5048 (1981)) J B (EERER)
EHF El-l'pt.
Today with advent Atom Ref. 59) gL ESIC-LAD (Ref. 62)
of new and hybrid i 13,6 130 136
: - ~13. -13. -13, -13.6
functionals the SIC Is He _an g g 794 50
usually ignored Li ~202.2 ~199.8 -204,2 ~203.5
Be ~396.5 —393.0 ~398.8 -399.1
B ~B67,4 —662.5 ~672.0 ~670.8



Fractional occupation number

We start first with the Euler variational equation of the energy functional with
respect to the particle number N

%(Eﬂ n] _,ufn.(r)afr —o, /n[r)dr _ N

A proper extension of the density to a fractional number of electrons (from a grand
canonical ensemble) is given by:

ny(r) = (1 —w)ny(r) +wnyy(r), 0<w<l

Such density may integrate to a non integer number.

The corresponding energy is a straight line segment with derivative discontinuities
at integer N:

E)* =(1-w)E) +wE)™*!
By this approach one can prove that the Lagrange multiplier is the chemical potential

SE, 0E,
on _oN _F




This is the equivalent of Koopman’s theorem for DFT and gives the value of the
lonization potential of the system,

EN-1 _pN _ - I J.P. Perdew and M. Levy, PRB 97, 16021 (1997)

Consider a fractional occupation w; of the spin orbitals and define the density as:

n(r)= Z wil s (r) 1% O<w <1

i=1,00

Also the energy and the orbitals are functions of w; and one can prove that:

o =< @i(wi)| — 5? + v|ei(wi) > +/ ( 57 ) (Bwi) = &4

Janak’s Theorem

J.F. Janak, PRB 18, 7165 (1978)



Janak’s theorem can be used to evaluate ab initio photoemission (XPS) energies by a
method closely related to Slater’s transition-state theory.

We assume that the total energy of the system with fractional w; electrons removed
from the level |i> is given by the power expansion:

E(N —w;) = E(N) + Aiw; + Bw! + Ciw;
—EiKS = A; + 2Biw; + 3C5wy

EXPS — E(N—1,)— E(N) = 4 + B, + C,

Level A B C A B C EXPS Expt
Cu L1 - 930.17 21.74 .25 028.40 22.84 0.43 951.67 952.0
909.81 27.74 1.25 008.04 22.84 043 931.31 932.2

5.72 0.91 2.86 0.87 0.10 3.84 3.1

Zn L1 - 1019.40 30.44 1.08 1016.98 26.17 0.82 1043.97 1044.0
995.69 30.44 1.08 09327 26.17 0.82 1020.26 1020.9

M45 10.14 7.06 0.77 7.53 282 042 10.78 9.9

G. Fratesi et al, PRB 78, 205111 (2008)



| DA+U M. Cococcioni and S. de Gironcoli, PRB 71, 035105 (2005)

e
- ——— LDA+U correction
It allows a treatment of strongly correlated Ef
systems. The LDA+U functional is adapted from -
the Hubbard model selecting a number of P
localized orbitals whose electronic correlation is
described in a specific way:
T W
ELDH% [ﬂ] — ELDA [ﬂ] + EHub an??}] + " NumNbernfalagt;*::ms e
—EPC [{n!7}] The curvature of the LDA energy is associated

with the spurious self-interaction of fractional
electrons introduced in the system and
IS amended by U.
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P. Mohn et al, PRL 87, 196401 (2001) 2000 500 1000 1500 2000 2500
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Beyond LDA: the GGA approach

Some non-locality was first introduced in exchange correlation functional by a gradient

expansion of the density (GEA).

Then the generalized gradient approximation (GGA) was proposed to set physical
constraints on the exchange and correlation holes, satisfied by the uniform electron
gas (LSDA) but not by GEA, obtaining much improved results.

our JLM81 aN
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FIG. 3. The alphabet soup of approximate functionals available in a code
near you. Figure used with permission from Peter Elliott.

K. Burke, JCP 136, 150901 (2012)



PBE functional

The PBE functional is based on PW91, but avoiding cumbersome features. It contains a
unified real space cutoff for exchange and correlation holes to avoid spurious long
range parts in the second order gradient expansion of density. PBE does not have any
fitting parameters, retains correct features of LSD, combines them with the most
energetically important features of gradient-corrected nonlocality.

S}’Sh’.‘ﬂl ﬂEl:EIF ﬁ.EL 5D ﬁEP‘L‘f"JI ﬂEPEE A Fexpt
H, 84 113 105 105 109
LiH 33 60 53 52 58
CH, 328 462 421 420 419

NH: 201 337 303 302 297
OH 68 124 110 110 107
H,0 155 267 235 234 232
HF 97 162 143 142 141
L1, 3 23 20 19 24
LiF 89 153 137 136 139
Be, — 13 10 10 3

C.H, 294 460 415 415 405

J.P. Perdew, K. Burke and M. Erzenhof, PRL 77, 3865 (1996)




B3LYP functional

This is a so called GGA hybrid functional since inclusion of the exact exchange F_ .

determines a non-local potential in the KS equation. 7 expressed in terms of KS
orbitals.

A,D. Becke, JCP 98, 1372 (1993) O. Salomon et al, JCP 117, 4729 (2002)

E_E:ELYP _ EgSDA + EIEIBBS + EQE;JLYP 4+ (1 . CE}EE"WN + cq [EII . Ei;SDA]

Gradient correction to exchange

B88 exchange and correlation by gradients of HF second order density matrix
and of the local kinetic energy

I Adapted from the random phase approximation (RPA) for a uniform
electron gas in the high density limit

The three parameters have been taken to reproduce a set of atomization energies,
lonization potentials, proton affinities, and total atomic energies.

The mixed character of this functional is probably one of the reasons for its success.



Alllin molecule
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Van der Waals (VdW) (dispersion) interaction

vdW is fundamental in several fields: atoms, molecules, solid state, chemistry, biology

Dispersion (London) forces are exhibited by nonpolar molecules because of the
correlated motion of the electrons in interacting molecules. For this reason, the
electron density in a molecule becomes redistributed in proximity to another molecule.
This is frequently described as formation of "instantaneous dipoles" .
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Size and accuracy

Accuracy
f Mean-field >
DFT — 1, ’
5000+ semi-local correlation->
no long-range dispersion
) HF
g MP2 & RPA 80%--95% of the
- ~— correlation ener
5 100 Mean-field (99% &
Q of the total energy !), CCSD
7 no correlation-> 99% of the
= 20 | no dispersion correlation CCSD(T) 1
% energy
>
7 Heaven=
2-4 Full CI,
ACEDT

For materials two approaches are considered for the vdW interaction:
. :
*» Non-local functionals

** Interatomic methods



The LL approach

Seamless DFT approach. Polarization expressed in terms of a
local dielectric function within RPA:

Ee[n] = E; [n] + B [n]

Bengt Lundquist

VdW-DF S
' Chalmers University,
\\ e CCSD(T) SWed e n
ar B Om=—{MP2
5 —— vdW-DF
3 N ---- GGA(revPBE) -
3 —-— GGA(PWO1) 1

GGA's
Binding distance 5-10% too long

David Langreth,
1937-2011

Interaction energy (kcal/mol)

_ Binding energy too low 50%
 [Geometry

Wave function
calculations

Separation (A)




Interatomic methods

_ pGGA LDA-GGA nl
E.TC — E:r _|_ EI‘:‘- _|_ Eﬂ,t:d“’r

C]D

!
- faﬁ — frog = e

Co
6

Evaw =~ —f¢ i

Breslau, 1900-54

Semi-empirical methods e

A.D. Becke, JCP 107, 8554 (1997) S. Grimme, J. Comp. Chem. 27, 1787 (2006)

Semiempirical Becke’s GGA B97-D (energy functionals with gradient contributions
expanded up to second order), parameterized by including damped atom-pairwise of
the form: C, R obtained by suitably fitting the experimental data.

S. Grimme et al J. Comp. Chem. 32, 1456 (2011)

Later the vdW correction (DFT-D3(BJ) (also with a term proportional to C;R?)
optimized to several GGA functionals.



To compute the vdW interaction on firmer grounds C4 and R, are derived from

the electron density of a molecule or a solid (by DFT-GGA) and accurate reference
data for the free atoms.

Pairwise summation of C6 for a molecule A. Tkatchenko and M. Scheffler, PRL 102, 073005 (2009)
One parameter in the damping function

Later long range electron screening in solids and molecules (PBE+vdW)

/| P Performance of DFT+vdW for S22
e
50 x| (Mean Absolute Error)
- = + b 2 @O& ‘ W vdW-DF-04
: 100 vdW-DF-
C¢/ H Bohr® o Shtw.® | B vdW-DF-10
© 5 G20 8 > 90 EMO6
g fe. A £ mMO06-L
- b O =, 80 -
05, %C D = B PBE-D3(Grimme)
o %o ’ 5 704 @ PBEO-D3(Grimme)
O X x O ® PBEO+vdW
O o Ll g 50
X 5
. gfgjg* 40,
H+D " %) 30
OHftd %« 8 20+
oA TS method  + =
33‘ o) Langreth—Lundqvist 2 |
N Johnson-Becke © 0 ! : J N |
=0 . . . . . — H-bond vdW Mixed Overall

C¢/ H Bohr® reference systems A. Tkatchenko et al, PRL 102, 236402 (2012)




Conclusions

»First principle determination of many-electron system
properties (mainly ground state): methods, achievements,
questions.

»Excited states, apart from HF derived methods (CI,CC),
require different approaches:

» TDDFT (time-dependent external potential): Excited
states to be determined by the poles of the density-

WAV GEA Y GEYA  density correlation function E.K.U. Gross, MPI, Halle
(1928-) (Germany)

» Many-body perturbation theory:

» Single particle excitations by quasi-particle energy

» Two particle excitation by the Bethe-Salpeter
equation.

G. Onida et al, RMP Grimme et al J. Comp. Chem. 74, 601 (2002)
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