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Conceptual framework

Scenario
Heterogeneous structures central to modern science & engineering

Structural complexity typically ranges from the microscale to the nano-scale

Standard continuum approach

homogeneous

material

heterogeneous

material

single ellipsoidal

inhomogeneity

standard 

elasticity

Eshelby 

theory

homogeneization 

techniques

scale-invariant prediction about the elastic fields within and nearby the inhomogeneity

Advanced models describe scale effects at surfaces and interfaces
→ Interface Stress Model (ISM)

ISM applied to
→ Eshelby configuration with interface effects - Duan et al. (2005) and (2008)
→ stratified particles - Duan et al. (2006)
→ alloyed quantum dots - Duan et al. (2006)
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Major conceptual difficulties arise by projecting continuum theories @ nano-scale
1 standard elasticity theory that can hardly work @ the nano-scale
→ continuum picture does not apply

2 constitutive equations @ nano-scale typically nonlinear
→ often overlooked in standard applications since leading to severe complications

3 only selected combinations of elastically nonlinear matrix or inhomogeneity
4 effective medium approach

Key issues for the elastic behavior of nano-structures materials

scale effects

nonlinear elastic response

nano-structure induced anisotropic
behavior

... and their possible interplay as well !

This work

attempt a more general solution based on an elastic lattice model fully exploiting
nanoscale features

no educated guess on the actual constitutive behavior for the interface (or nonlocal
continuum model) assumed

atomic-scale degrees of freedom fully described by constitutive force fields
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Steps
1 An elastic lattice model is developed such that:

continuum elasticity mapped onto a discrete lattice
a suitable interatomic distance introduced→ the notion of length scale is naturally introduced
and, therefore, the possible onset of scale effects can be described;
an arbitrary continuum constitutive law (either linear or not) translated into a simple atomistic
interaction potential

2 2D Eshelby problem used to benchmark the model
simple two-body interaction potentials (harmonic, linearized and anharmonic) to govern the
mechanics of a triangular (isotropic) lattice
extension to many-body potentials straightforward (but quite boring!)

3 model applied to predict the elastic moduli of a nano-/alloys&graded interfaces
generate a proper atomic-scale structural model
define a simulation protocol to address the stress-strain relation
compute both linear and nonlinear elastic moduli
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Elastic lattice model

2D triangular lattice of atoms, belonging to the hexagonal crystal symmetry
→ isotropic linear elastic behavior, as indeed requested by the Eshelby theory
→ straightforwardly extended to 3D lattices and/or arbitrary crystal symmetries

linear regime: isotropic behavior 2 independent elastic moduli λ and µ
nonlinear regime: anisotropic behavior, 3 independent elastic moduli Λ1, Λ2 and Λ3

elastic energy density U(ε̂) - continuum formulation

U(ε̂) =
λ

2
[Tr(ε̂)]2 + µ Tr(ε̂2) + Λ1(ε11 − ε22)

h
(ε11 − ε22)

2 − 12ε2
12

i
+

1
2
Λ2 Tr(ε̂)

h
2 Tr(ε̂2)− Tr(ε̂)2

i
+

1
2
Λ3 Tr(ε̂)3

elastic moduli related to stiffness constants of crystal elasticity through

λ = C12 2µ = C11 − C12

Λ1 =
1
12

(C111 − C222)

Λ2 =
1
4
(C222 − C112)

Λ3 =
1
12

(2C111 − C222 + 3C112)
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each site of the triangular lattice is occupied by an atom
→ U(ε̂) given by of a suitable interatomic potential

N-body force field at work - each term governed by a single parameter
→ 2-body terms mimic bond stretching → 3-body terms mimic bond bending

this work: interatomic interactions only described by 2-body harmonic springs between
next neighboring atoms → Uh = 1

2κh(rij − r0)
2 = 1

2κh (~nij ·∆~uij)
2 +O(u3)

elastic energy Ulattice - elastic lattice formulation

Ulattice = U0 +
1
2

X
ij

[Ul(rij) + Uh(rij) + Ua(rij)]

By definition:

1 linearized terms Ul = L
h

1
2κl (rij − r0)

2
i

= 1
2κl (~nij ·∆~uij)

2 affect only the linear elastic moduli
Cαβ

2 harmonic terms affect both the linear Cαβ and the nonlinear Cαβγ elastic constants

3 anharmonic terms Ua = 1
3

κa
r0

(rij − r0)
3 affect only the nonlinear moduli Cαβγ
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proved that a triangular lattice described by the atomistic potential energy Ulattice is
equivalent to the continuum described by the strain energy function U(ε̂)

the linear and nonlinear elastic moduli are provided by the following synopsis

C11 =
3
√

3
4

(κl + κh)

C12 =

√
3

4
(κl + κh)

C111 =
9
√

3
16

κh +
9
√

3
8
κa

C222 =
3
√

3
16

κh +
11
√

3
8

κa

C112 = −
5
√

3
16

κh +
3
√

3
8
κa

Key results

1 the continuum elastic behavior can be obtained by properly setting the potential
parameters κh, κl, κa

2 such a 2-body interaction potential works as a constitutive force field
same holds for any N-body potential choice: more flexibility... but much more complex
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linear elastic - positive Poisson ratio
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linear elastic - negative Poisson ratio
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nonlinear hypoelastic
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Longitudinal Stress
Transversal Stress

nonlinear elastic - hyperelastic
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Isotropic linear behavior is a consequence of the lattice symmetry (honeycomb)

Isotropic nonlinear behavior (C111 = C222) enforced by κa = 3
2κh
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2D Eshelby problem

x1

x2

direction of the
remote uniaxial strain

transverse
deformation
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Case study
system under uniaxial strain along x1

transverse and longitudinal deformations
calculated and then represented as
εl = LIε+ LIIε2 and εt = T Iε+ T IIε2

with −0.01 ≤ ε ≤ +0.01

Atomistics
144000 atoms (120nm-large simulation
cell)

asymptotic boundary conditions

atomic degress of freedom relaxed
through dumped dynamics

Four combinations:
1 linear matrix - linear inhomogeneity
2 linear matrix - nonlinear inhomogeneity
3 nonlinear matrix - linear inhomogeneity (*)
4 nonlinear matrix - nonlinear inhomogeneity (*)

Under isotropy condition:

linear material: C111 = C222 = C112 = 0

nonlinear material: C111 = C222

Constitutive force field

material κl κh κa
linear K 0 0

nonlinear 0 K 3
2 K

K: the elastic stiffness (material specific)

different elastic contrasts log2
Kmat
Kinh

different radius R values
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linear matrix - linear inhomogeneity
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matrix) atomistic data differ from the continuum
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disagreement vanishes for larger R

effect attributed to truly atomic-scale features

scale effects stronger for LI than T I .

Key result

The lattice elastic model sets a lower limit of validity for the Eshelby theory, as far as the
length scale is concerned
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linear matrix - nonlinear inhomogeneity
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linear coefficients LI and T I as before
→ not affected by a possibly nonlinear inhomogeneity
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nonlinear coefficient LII large differences between
atomistics and continuum for positve elastic contrast

nonlinear coefficient T II marginally affected by elastic
contrast

scale effects observed even for nonlinear
coefficients
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Searching for scaling laws in atomistic effects
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LI(R) (top) and LII(R):
atomistic coefficients for
different elastic contrasts.

LI(∞) and LII(∞): continuum
counterparts (Eshelby theory)

atomistic data fitted by the power laws

LI(R)

LI(∞)
= 1 +

a
Rα

;
LII(R)

LII(∞)
= 1 +

b
Rβ

found the same scaling exponent for the
linear and nonlinear coefficients

α ' β ' 1.11± 0.05

scaling exponents independent of elastic
contrast

Key result of lattice elastic model

both linear and nonlinear behaviors belong to
the same universality class

continuum ISM -based on competition between
surface/volume- provides α = 1

present results rather suggest α is related to the
discretization of the continuum equations at
the atomic scale
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Nano-alloys

structural model
1 two elastically different media placed onto an honeycomb lattice
2 random dispersions (0% < c < 50%)
3 circular inclusions with constant radius R ' 10Å and R ' 20Å

elasticity
1 matrix: isotropic linear material inhomogeneities: isotropic nonlinear material
2 two linear moduli: µ and K
3 two nonlinear parameters: b =

C111−C112
4 and c = 3

4 (C112 − 1
3 C111)

simulation protocol large-scale simulations (∼ 105 atoms)
1 elastic moduli computed through interpolation of the stress-strain curves
2 atomic degrees of freedom relaxed by dumped dynamics
3 atomic-level stress tensor provided by virial
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Atomistic results vs. continuum prediction: inclusions stiffer than matrix

Results

overall good agreement
between atomistics and
continuum

Hashin-Shtrikman
bounds fully satisfied
for both linear
coefficients

interesting enough
continuum predictions
are well verified even
for high c-values
(while expected to
work basically in the
regime of dilute
dispersions)
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Atomistic results vs. continuum prediction: inclusions softer than matrix

Results

agreeemnt between
continuum and
atomistics found only
for larger
inhomogeneities
R ' 20Å

for positive elastic
contrast a
size-dependence of the
elastic behavior
observed atomistically
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Nano-graded interfaces

structural model
1 two elastically different media placed onto an honeycomb lattice
2 periodic boundary conditions along z
3 random dispersions of grains
4 arbitrarly-shaped concentration profiles

elasticity
1 matrix: isotropic linear material inhomogeneities: isotropic linear material
2 two linear moduli: E and ν

simulation protocol (large-scale simulations: ∼ 105atoms)
1 plane strain deformations - strain evaluated just in the interface region (after relaxation)
2 atomic degrees of freedom relaxed by dumped dynamics
3 stress in the interface region evaluated as average of atomic-level stresses (virial formulation)
4 stiffness coefficient obtained by the consitutive equation T̂ = Cε̂
5 elastic moduli: ν =

C12
C11

and E =
C2

11−C2
12

C11
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Results

continuum results
obtained within an
effective medium
theory (EMT): graded
interface replaced by
an isotropic slab with
average properties

observed anisotropic
elastic behavior

EMT only valid for
elasticity along the
growth direction
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Conclusions

1 conceptual mapping of the constitutive linear and nonlinear equations of the continuum
elasticity theory onto a lattice model

2 atomistic structure exploits the actual nano-structure (single/multiple inhomogeneity/ies
and graded interfaces)

3 notion of length-scale naturally introduced
4 investigate by computer experiments possible scale effects on the elastic behavior of

nanostructured materials.
5 anisotropic behaviors (due to nano-structure) properly captured
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Abstract

We elaborate on a blended continuum/atomistic theoretical picture of the nonlinear elastic

properties of nanostructured materials, looking at diverse aspects such as dispersions of

inhomogeneities within a matrix, random or graded nanograined materials, two-dimensional

atomic sheets. In particular, we discuss the possible onset of length-scale effects and we

establish the limits and merits of continuum versus atomistics. While most situations here

discussed correspond to model systems, the main conclusions have a paradigmatic relevance

and indeed apply to most nanomaterials of current interest.

This article was invited by S Washburn.
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