Computer Simulation of Advanced Materials Lomonosov Moscow State University

Multiscale modelling in Materials Science

James Elliott (Джеймс Эллиотт)

Head of Materials Modelling Group Department of Materials Science & Metallurgy University of Cambridge

http://www.elliotts.org.uk

Multiscale Hierarchy for Materials Modelling

J. A. Elliott "Novel Approaches to Multiscale Modelling in Materials Science" Int. Mat. Rev. (2011).

Polymer electrolyte membranes for fuel cells

Structural family of PerFluoroSulphonic Acid (PFSA) ionomers

- Differ only by the *length* and *distribution* of side chains
- How do differences in chemical structure affect the material and functional properties of membrane?

Proton dissociation vs. side chain separation

[1] S.J. Paddison and J.A. Elliott, J. Phys. Chem. A 109, 7583-7593 (2005)

Proton dissociation vs. water content

$CF_{3}CF(-O(CF_{2})_{2}SO_{3}H)-(CF_{2})_{7}-CF(-O(CF_{2})_{2}SO_{3}H)CF_{3}$ + $P_{2}H_{2}O$

B3LYP/6-311G**

[1] Paddison SJ & Elliott JA, *Phys. Chem. Chem. Phys.* 8, 2193-2203 (2006)
[2] Paddison SJ & Elliott JA, *Solid State Ionics* 177, 2385-2390 (2006).

Early models for aggregation in ionomers

[1] Mauritz, KA, Hora, CJ & Hopfinger, AJ *Ions in polymers* Adv. Chem. Series No. 187 (1980)
[2] Hsu, WY & Gierke, TD *J. Membrane Sci.* 13, 307-326 (1983)

Fibrillar model of Grenoble group (Diat, Gebel)

[1] Rubatat L, Rollet AL, Gebel G & Diat O *Macromolecules* 35, 4050-4055 (2002).
[2] van der Heijden, PC, Rubatat, L & Diat, O *Macromolecules* 37, 5327-5336 (2004)

Parallel cylinder model of Schmidt-Rohr

- Cylindrical water-filled channels (white) and crystallites (black)
 (L > 100 nm) running perpendicular to the plane of slide
- Scattering profile calculated numerically (via FFT) from 2D charge distribution before being averaged in 1D

Schmidt-Rohr K & Chen Q Nature Materials 7, 75–83 (2008)

Simulating PFSA morphology using DPD

Wu D, Paddison SJ & Elliott JA, Energy Environ. Sci. 1, 284–293 (2008)

DPD parameterization procedure

Each bead acted on by pairwise sum of forces over neighbours

[1] Groot RD & Warren PB, J. Chem. Phys. 107 4423-4435 (1997).

[2] Wu D, Paddison SJ & Elliott JA, Energy Environ. Sci. 1, 284–293 (2008).

Unified morphology from DPD and SAXS models

Elliott JA, Wu D, Paddison SJ & Moore RB, Soft Matter 7, 6820-6827 (2011)

Comparison of 2D SAXS data from MaxEnt and DPD

Elliott JA, Wu D, Paddison SJ & Moore RB, Soft Matter 7, 6820-6827 (2011)

Electrode/electrolyte interfaces at PEM cell anode

[1] Liu; Selvan; Cui; Edwards; Keffer; Steele; J. Phys. Chem. C 112 1985-1993 (2008).

Summary of nanocomposite morphology

- Confinement of polymeric phase into 2D slab with nanoscopic width, L, gives rise to discrete layers of water channels
- When L = 5 nm (approximately 'cluster' size for bulk membrane), obtain just singe channel, bordered by side chains
- In case of GO, with more hydrophilic surface than graphene, more water seen close to interface for smallest layer (5 nm)
- When L > 10 nm, channel swells and begins to split into multiple channels. No significant difference between graphene and GO at interface
- Side groups strongly adsorb to Pt even though "non-adsorbing"
- Existence of discrete channels of ionic aggregates, frustrated due to confinement by pores in catalyst support

Multiscale structure of hierarchical nanomaterials

[1] Espinosa, Filleter and Naraghi Adv. Mater., 24, 2805 (2012).

CVD-grown nanotube fibres with high specific strength

A material strong enough for a "space elevator"?

E = 1 TPa

 $\mathbf{s}_{\mathrm{f}} = 120 \mathrm{GPa}$

[1] B. I.Yakobson and R. E.Smalley, American Scientist 85, 324-337 (1997).

Macroscopic model for CNT bundle strength ^[1]

Assembly of 'short' fibrous elements which fail in shear at a specific strength, s', given by:

$$\mathbf{s} \not = \frac{1}{6} \mathbf{W}_1 \mathbf{W}_2 \mathbf{t}_F L \quad [\text{N/tex}]$$

 W_1 is ratio of nanotubes on the perimeter of the bundle to the total number of tubes (SWCNT = 1, DWCNT » 0.5, fibre < 0.1)

 W_2 is proportion of a nanotubes in contact with neighbours (estimated » 0.85 for fibres from both experimental TEM and atomistic simulations) t_F is the shear strength between graphene layers (assumed 50 kPa)

- L is the length of fibrous elements (» 1 mm, aspect ratio 10⁵)
- Using these values, obtain a tensile strength of 3.54 N/tex

[1] Vilatela, Elliott and Windle, *ACS Nano* **5** 1921-1927 (2011).

Effect of tube collapse/polygonization on W₂

Limit to stability of larger tubes at ambient pressure spontaneous collapse due to tube polygonization & flattening

(30,30) SWNT diameter 4.16 nm (50,50) SWNT diameter 6.94 nm

[1] Elliott et al., *Phys. Rev. Lett.*, **92**, 095501 (2004).

Effect of tube collapse & polygonization on W₂

[2] Motta et al., Adv. Mater., 19, 3721 (2007).

[3] Pugno & Elliott, Physica E, 44, 944 (2012).

Range of wall/sheet shear strength, t_F

■ Wide range of measured strengths: from 0.04 to 69.0 MPa.

Material	Method	Shear strength (MPa)	Reference
Single	Mechanical shear	0.029	[1]
crystal			
Graphite			
MWNT on	Tube rolling and	2.0	[2]
Graphite	sliding		
MWNTs	Intratube sliding	0.08	[3]
MWNTs	Intratube sliding	>0.04	[4]
SWNTs/	Intratube sliding	4.0	[5]
MWNTs			
MWNTs	Intratube sliding	2.0 - 69.0	[6]

[1] Soule, D. E. & Nezbeda, C. W. J. App. Phys. 39, 5122-5129 (1968).

[2] Falvo, M. R. et al., Nature 397, 236-238 (1999).

[3] Yu, M., Yakobson, B. I. & Ruoff, R. S. J. Phys. Chem. 104, 8764-8767 (2000).

[4] Kis, A., Jensen, K., Aloni, S., Mickelson, W. & Zettl, A. Phys. Rev. Lett. 97, 025501 (2006).

[5] Bhushan, B., Ling, X., Jungen, A. & Hierold, C. Phys. Rev. B 77, 165428 (2008).

[6] Suekane, O., Nagataki, A., Mori, H. & Nakayama, Y., App. Phys. Exp. 1, 064001 (2008).

Sliding of turbostratic bilayer graphene is facile

[1] Shibuta and Elliott Chem. Phys. Lett., 512, 146-150 (2011).

Summary: prospects to increase CNT fibre strength...

- W₁, W₂ : fairly close to limits already (although good idea to minimize bundle size and number of walls in fibrous elements)
- L : increase length of fibrous elements (1 order possible?)
- t_F: can increase by several orders of magnitude by: irradiation (defects, cross-linking) chemical functionalization introducing polymeric additives
- Irradiation effects has been assumed that improvement is due to cross-linking effect, but could be due to softening of inplane stiffness by increasing defect density
- Realistic to expect CNT fibres with strengths reproducibly around 10 N/tex over large lengths

Lattice Monte Carlo (MC) polymer model

A single polymer bead is moved at a time to create a new state in MC simulation ^[1]

- Standard canonical MC
 - fixed temperature
 - visits states with probability

$$p_{NVT} = D(E) \exp(-\beta E)$$

- Multicanonical MC^[2]
 - visits all energy states with equal probability
 - system statistics at any temperature can be obtained by reweighing

Mapping and reverse-mapping of amorphous PE

[1] J. Baschnagel et al. *Adv. Polym. Sci.* 152, 41-156 (2000).
[2] F. Müller-Plathe *ChemPhysChem* 3, 754-769 (2002).

Modelling PE/CNT composite

- 16 chains of PE ($C_{101}H_{204}$) and a (6,6) SWCNT were placed into a periodic cubic cell ($f_{CNT} = 0.082$)
- System initialized on lattice, and then relaxed atomistically.

Ordered layering of polymer around SWCNT

Elastic Properties – Young's Modulus

- Calculation Methodology
 - A stepwise decreasing increment of cell size in longitudinal and transverse directions was applied to the system, separately.
 - A 200 ps NVT run was allowed between each increment for equilibration.
 - The change in stress was measured as a function of the strain.
 - Total strain less than 3% of initial cell size.

Positive deviation from rule of mixtures

... when interactions between PE-CNT are enhanced

Effective fibre predictions from Halpin-Tsai model

[1] J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun'ko, Carbon 44, 1624 (2006).

Interfacial heat transfer between CNT and PE

- System
 - A (10,10) single wall carbon nanotube (CNT) and amorphous polyethylene chains (figure on the right)
- Force field
 - CNT : Universal Force Field¹
 - Polyethylene : Polymer Consistent Force Field²

Lumped heat capacity method³

[2] H. Sun et al. J. Am. Chem. Soc. 116, 2978 (1994)

[3] C. F. Carlborg et al. Phys. Rev. B 78, 205406 (2008)

Behaviour of thermal boundary conductance K

Temperature dependence

K increases with temperature

Øncrease in inelastic phonon scattering

• Phonon scattering at interface

CNT force constant k dependence (change strength of force field in CNT)

Elastic vs. inelastic conduction of lattice vibrations Thermal conductivity is JUNCTION DOMINATED

Frequency shift in PE power spectrum near CNT

Summary of mechanical and thermal property results

- Combined use of lattice model and reverse-mapped atomistic simulations give a fully relaxed composite morphology
- Even for PE-CNT composites with low interfacial energies, see a clear ordered layering of polymer chains around CNTs
- For strong CNT-polymer interactions, the ordered layer gives rise to strong positive deviations from rule of mixtures for low strain elastic properties
- CNT-polymer interactions also give rise to *localized upshift* in frequency distribution close to tube surface, enhancing the transfer of thermal energy from matrix to CNT
- Tune the boundary conductance to improve properties

