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Computer simulation of advanced materials

Textbook materials and illustrations

= Chemical structure theory is valid (molecules,
chemical bonds, ...)

= Model systems composed of large number of
atoms are of interest

= Proteins may be considered as advanced
materials (at least for biotechnology)




Molecular mechanical (MM) model
The system is composed of atoms
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Molecules are stable systems of nuclel and
electrons

As such, their structure and dynamics should

be governed by Quantum Mechanics
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Electronic structure models

HC = ESC

Numerical solution of matrix equations




Why do we need quantum mechanics?




Why do we need quantum mechanics?

- Excited electronic states are involved

Example:
fluorescent

neutral
Bravaya K.B., Grigorenko B.L., Nemukhin A.V., Krylov A.l., Acc Chem Res, 45, 265 (2012)




Why do we need quantum mechanics?
- Cleavage and formation of chemical bonds are involved

Example: hydrolysis of adenosine triphosphate (ATP)
In motor proteins
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Grigorenko B.L., Nemukhin A.V., et al., Proc Natl Acad Sci USA, 104, 7057 (2007)




Why do we need quantum mechanics?
- Force field parameters may be not accurate enough

Grigorenko B.L., Shadrina M.S., Nemukhin A.V.,, et al., Biochim Biophys Acta, 1784, 1908 (2008)




School

Basics of guantum mechanics




Basics of quantum mechanics

General considerations

Quantum and classical mechanics

Wavefunctions

Observables

Hydrogen atom

Spin




Quantum mechanics is the theory of the behavior of microscopic
objects, including electrons and nuclei, for which

t1
the action S = [ L(q,...,q,,t)dt
{0

is comparable to the Planck’s constant h = 1034 J-s




The Lagrangian function (L=T-V)
do oL
dt og; 0oq;

The Euler-Lagrange equations

The Hamiltonian (H=T+V) H(Q,,...,d,, P;»---» Ppy» t)
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The Hamilton' ti i — T~ i =
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The Hamilton-Jacobi formulation
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Classical mechanics Correspondence Quantum mechanics
S »h principle S~Hh

System can be characterized by a
function of coordinates and time

S(0ys++ Gy t)

S defines states of the system

System can be characterized by
functions of coordinates and time

Y(G-1 Gy t)

Each W refers to a state of the system

This function S can be found as a
solution of the differential equation
0s oS
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Functions ¥ can be found as
solutions of the differential equation

Knowing function S one can find
trajectories and to compute
observables

Knowing functions ¥ one can
compute observables




Classical and
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Observables ... for a particular state




Quantum Mechanics: Keyword “System”

e

System —) the Hamiltonian operator H

As only we select a system for an analysis we can write down an
explicit expression for the Hamiltonian operator.

Examples:

A particle of mass m in a one-
dimentional potential V(x)

One-elctron atom: an electron
In the field of a nucleus




Quantum Mechanics: Keyword “States of the system”

An essential feature of QM is that certain parameters of the system
can take on discrete values varying from one state to another by
‘guantum jumps’.

Example: Few states of the hydrogen atom

State | Total energy |Electronic

(1020 J/atom) | angular
momentum

-218.6

-54.6

-54.6




These ‘jumps’ are observed In
experimental spectroscopy

States 2s and 2p of the hydrogen atom

Total energy
(1020 J/atom)

-218.6
-54.6
-54.6

State 1s of the hydrogen atom

t n
R e e AR e 0o
i bt i R
T (i
pr=y I-lﬂﬂ"ErEl:l
+“"““ﬁﬁﬁé”
2
-
] =100
o
x
==
o
T
[T
c
w
t=200
AL ” Ultraviolet
—_— 2B e e 1
100 200

Wavelength (nm)



Quantum Mechanics
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System
States ... of the system

Wavefunction ... of a state

Observables ... for a particular state




Quantum Mechanics: Keyword “Wavefunction”

The state of a system is described by a wavefunction
of the coordinates and the time Y¥(qy,..., g,,1)

The probability:

¥ *(r,t)V(r,t)dxdydz The probability that the particle
IS In the volume element dxdydz
located at I, at time t.

Y must satisfy mathematical conditions:
« Single-value

o Continuous

e Quadratically integrable

T 1 [ w*(r.0)W(F t)dxdydz =1

—00 —00 —00




Quantum Mechanics: Keyword “Wavefunction”

Why probabilities?




The Heisenberg uncertainty principle: “The more precisely the
position is determined, the less precisely the momentum is known

In this instant, and vice versa.”

large spread in p < » small spread in x.
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small spread in p « » large spread in x.
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probability of x

probability of p

p——s X—0

Quantum particles do not travel along trajectories.




Keyword “Wavefunction™: Superposition principle

The “negative content” (Landau, Lifshchitz) of the uncertainty
principle is balanced by the *“positive content” of
the superposition principle:

If ¥, Y, ..., ¥, arethe possible states of a system, then the linear
combination of these states is also a possible state of the system

Physical consequence:  The equations for ¥ must be linear, e.g.,

OF(xt)  n* 0"P(x.t)
ot 2m  Ox?

17

V(X D)W(x,1)

Either the Schrddinger equation,
or the superposition principle
should be postulated




Postulates of Quantum Mechanics

1. Probabilities (due to the uncertainty principle):

¥ *(r,t)¥(r,t)dxdydz  The probability that the particle
IS in the volume element dxdydz

. . located at I , at time t.
2. The superposition principle:

If ¥, Y, ..., ¥, arethe possible states of a system, then the linear
combination of these states is also a possible state of the system.

and

3. For every observable mechanical quantity of a system, there is a
corresponding linear Hermitian operator associated with it.
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For every observable mechanical quantity of a system, there is a
corresponding linear Hermitian operator associated with it.

To specify this operator, write down the classical expression for the
observable in terms of Cartesian coordinates and the corresponding

linear momentum, and then replace each coordinate x by the operator

X and each momentum component p, by the operator p, = —ihi

OX




Some mechanical quantities and their operators

Position (x)

Linear momentum (p,)

Angular momentum
(Lz:Xpy'pr)

2

Total energy (T+V) pw j +V(X,Y,2,1)




If a system is in a state described by a normalized wavefunction P,
then the average value of the observable A in this state Is given by

A, =(¥ | AY)

The Hermitian operator ensures a real number for A
We talk on average values by the same reasons as on probabilities
(the uncertainty principle).




Finding eigenfunctions and eigenvalues of operators associated with
observables is one of the major goals of QM.

Solution of the time-independent Schrddinger equation |—A|\}fi =E WY,
allows one to find the total energies E; of the system under study.

In particular, for any molecule composed of electrons (e) and nuclei (n)

+T +V +V +V.

€—nN

~

H=T

electrons

nuclei

The differential equations must be augmented by the boundary
conditions for the wavefunctions (single-value, continuous, ...) since
they describe waves of probabilities.




Eigenfunctions and eigenvalues of the component L,
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Differential equation:

L@, () =1,9,(p)
Conditions:

D (¢ +27) = D(p)

(@) = [0 (p)D(p)dp -1
Answers: ’

|, =mh

D (p) = FeXp(lmco)
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Important question of the QM theory: What do we know about A in the
state characterized by the wavefunction ¥?

Answer: If ¥ happens to coincide with one of the eigenfunctions of A
then in this particular state we know A precisely, and the only
result of the measurement is the corresponding eigenvalue of A
If ¥ does not coincide with any of the eigenfunctions of A
then we can predict only the averaged value of A:

A, =(V | AY)

A probability of measuring a particular value a, in the state ¥
IS 2
W, =| <ch | ') |

where @, is the corresponding eigenfunction of A.

~~




Another important question of the QM theory:
Can we know two mechanical variables A and B simultaneously and
precisely?

Answer: Two observables A and B are principally simultaneously
measurable (have the common set of eigenstates) if and only if their
corresponding operators commute AB = BA.

More specifically: The commuting operators have the same set of
eigenfunctions, and if the wavefunction of a particular state coincides
with one of these eigenfunctions, one may know A and B
simultaneously and precisely in this state.

When the operators do not commute, one can never know A and B
simultaneously and precisely in any state.




Quantitative side of the uncertainty principle
The uncertainties AA and AB of any two observables in any physical
state W satisfy the inequality

AA-ABZ%|(‘P|(AI§—I§A)|\P>|

Position and momentum:  Xp, — P, X =1%

h
hence, AX . Apx > E large spread inp < » small spread in x.

probability of x

A LA
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probability of p

small spread in p < » large spread in x.
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probability of p
probability of x




Anqular momentum operators




All three components of angular momentum cannot be measured
simultaneously, which tells us that there does not exist any physical
state in which the direction of angular momentum is definite.
However, there do exist states in which the magnitude of angular
momentum is definite along with one component.

Z

X

One can know simultaneously and precisely L2 and L, while no

knowledge on L, and L, Is allowed. The physical reasons are traced
back to the uncertainty principle.




The commuting operators L*and L, have a
common set of eigenfunctions.
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L,Yim (6, 9) = (hM)Y,, (6, 9)
LY, (0, 0) = 2*1(1 +1)Y,, (6, 9)
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Hydrogen atom

The one-electron atom: The system - an electron with the charge e and

2
mass 4 in the field v (r) = - 28"

The Hamiltonian operator

States of the system are described by the
solutions of the equation

ﬁT(r,@,@ =EY(r,0,0p)

Since H, [*and L, are the pairwise commuting operators

HL° -L°H =0, HL.-LH=0, L°L,-L,L*=0

there exist states in which the total energy, the magnitude of angular
momentum, and the component of angular momentum are definite.




Hydrogen atom

Therefore, the energy eigenstates may also be chosen to be eigenstates
of the angular momentum operators

Ve (r,0,0) =Rg (NY,, (0, 9)

LY (6,9) = (lm)Y,., (6, )
Y (8,90) = 2*1(1 +1)Y,,, (8, )
m=0,+1+2,...

|=012,...
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Hydrogen atom

Therefore, the energy eigenstates may also be chosen to be eigenstates
of the angular momentum operators

LIIE (r1 81 ¢) — REI (r)YIm (61 §D)

Radial eigenfunctions Rg,(r) and energies E are computed from the
ordinary differential equation

ned (rzdeJ{hzl(Hl)_Zez

C2ur?dr dr 2r° r

— E}R(r) =0

Boundary conditions: R(r) and d%r must be continuous, R(r) must
be quadratically integrable ofRz(r)r"‘dr < 0.

0
The answers: R (r) oc Pol, (r)exp(-2,r)




Hydrogen atom: States

Quantum Mechanics: Keywords “States of the system”

An essential feature of QM is that certain parameters of the system
can take on discrete values varying from one state to another by
‘quantum jumps’.

Visible

Example: Few states of the hydrogen atom

State | Total energy |Electronic

(1020 J/atom) | angular
momentum

-218.6 5 P
546 c L ue

-54.6 n 2n2 hz i tyvyvy Ultraviolet

ke o o ety

Energy x 10% (J/atom)

n=1.2.... =0,1,...,n-1 m=-1, -1+1,...1 ‘ 100 200

Wavelength (nm)

1s n=1, |=0, m=0

2S n=2, |I=0, m=0

2p  n=2,1=1, m=-10,1
3s n=3,1=0,m=0




Hydrogen atom: Images of wavefunctions

1s




Hydrogen atom: Images of wavefunctions

25




Hydrogen atom: Images of wavefunctions

2p  n=2,1=1, m=0




Hydrogen atom: Images of wavefunctions

3s




Hydrogen atom: Images of wavefunctions




Hydrogen atom: Images of wavefunctions

3d




Hydrogen atom: Atomic Orbitals (AOs)




Spin

In the non-relativistic guantum mechanics, we have to assign to every
‘elementary’ particle an angular momentum which is not related to
possible ‘orbiting’ of the particle. An internal angular momentum, the
vector with components s,,S,,S,, Is called spin. Unlike orbital angular
momentum these components cannot be expressed in terms of Cartesian

coordinates and linear momenta.
The square of the spin length is a characteristic feature of a particle:
for every electron in all states it has the value

s=1/2 37l2
4

s% =n%s(s+1)




Spin

The theory of spin is constructed by analogy with the theory of
orbital angular momentum.
Important: the commutator relations

N

5,5, — 5,5, =17, %S, —§.5°=0
ce _ & =2 & &2
S,Sx — 5,5, =178, §°s,-5,5°=0
& & a a2& & &2
S,S, —S,S, =18, S°S,—-5,5°=0

» only two quantities are measurable s? and s,

+ 5% and S, have a common set of eigenvectors |s,Ms)
5% s, m)=n%s(s+1)|s,m;)
S,|s,ms)=nAmg|s,m)

For electrons: s=%2 (always)

M, = 15, +Y




Spin

The theory of spin is constructed by analogy with the theory of

orbital angular momentum.
Important: the commutator relations

5,5, — 5,5, =178, S
S,Sx — 5,5, =178, S
S,S, —S,S, =18, S

N

N

S, —§.8°=0
~ = =2

S, —5,S =0
S, -5,5°=0

» only two quantities are measurable s? and s,
+ 5% and S, have a common set of eigenvectors |s,Ms)

5%|s,m)y =h%s(s+1)|s,m;)
S,|s,ms)=namg|s,m)

For electrons: s=%2 (always)

M, = 15, +Y

L,Yin (60, 9) = (hm)Y,, (6, 9)
Y (0,0) = R21(1 + )Y, (6, )
m=0,£1,%2,...,l
|=0,12,...

Orbital angular momentum




Spin

Two possible spin states of an electron

la) =|s=1/2,m, =1/2)

| By =|s=1/2,m, =—1/2)




Spin — Application of addition of angular momentum

2-electron spin vectors

(J1=%, J,=%)

The total spin of two electrons may be either |%2-¥2|=0 (singlet states),

Two possible spin states of an electron

la)=|s=1/2,m, =1/2)

| B) =|s=1/2,mg =—1/2)

Triplet state 2-electron spin vectors |

or Y+%%=1 (triplet states)

Singlet state 2-electron spin vector

10,0) =%{| Do | B Ba @

LD = a)ay @)z

1
1,0) :ﬁﬂ )y | Doyt Bl 2k
L-D =By B




Interchange Hypothesis For Identical Particles

Interchanging the positions of two identical particles does not change
the physical state.

Identical (elementary) particles have the same parameters — the mass,
charge, and magnitude of spin momentum. Positions I and spin
projections ¢ are considered as ‘coordinates’.

The wavefunctions must be either symmetric or antisymmetric with
respect to an interchange of positions and spin projections of any
pair of identical particles:

Y(roy,...1oy,..roj,..oy) =t¥(ro;,..1o;,.. o, yoy)

w R o A

o




The Spin Statistics Theorem

Systems of identical particles with integer spin s =0; 1; 2;... are
described by wavefunctions that are symmetric under the interchange
of particle coordinates and spin. Systems of identical particles with
half-integer spin s = 1/2; 3/2;... are described by wavefunctions that
are antisymmetric under the interchange of particle coordinates

and spin.

Particles with integer spin are known as Bosons. Particles with half-
Integer spin are known as Fermions. Examples include, in particular,
electrons, and protons.

Therefore, electronic wavefunctions must satisfy a condition

Y(ro,,...Lo;,..Fo;,.,.[yoy)=—-Y(ho,..lo;..[o...[yoy)

\ﬁ—,' &_,




Quantum Mechanics for the Electronic Structure Theory

System
States of the system

Correspondence principle
Classical mechanics

Wavefunctions
Superposition principle
Hilbert space

Observables
Uncertainty principle

Hydrogen atom
Orbitals

Spin
Spin coupling
Interchange hypothesis




Molecules are stable systems of nuclel and
electrons




Molecules are stable systems of nuclel and
electrons

Moving further

Z
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w

The Born-Oppenheimer approximation

To a high degree of accuracy we can separate electron
and nuclear motion due to larger masses of nuclei




The Born-Oppenheimer Approximation

~ ~ ~

=T +Touetei T Voo Vo +V

electrons nuclei e—n
to the nuclear equation

~

el Telectrons

Electronic equation I:IeI v, R = E v, (r;R)

BO approximation leads to the idea of a potential

energy surface
UR)=E, +V,




Solution of the nuclear quantum equation allow us to
determine a large variety of molecular properties.

An example are vibrational spectra.



Example: calculated vibration of the -C=0 group in the
bacteriochlorophyll of photosynthetic reaction centers




Example: calculated vibration with the imaginary frequency
on the route of retinal iIsomerization in rhodopsin

Bathorhodopsin

N_—

Rhodopsin
Khrenova M.G., Bochenkova A.V., Nemukhin A.V., Proteins, 78, 614 (2010)



About electronic equation etc

The lecture by Professor Gian Paolo Brivio
“Ab-initio & DFT* on July 18



Concluding examples
How does it work?




Concluding examples
How does it work?

Chromophore

s




Anionic GFP in the gas phase
CASSCF(12/11)/cc-pVDZ
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Anionic GFP in the gas phase Min-S,
CASSCF(12/11)/cc-pVDZ
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Anionic GFP in the gas phase
CASSCF(12/11)/cc-pVDZ
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Anionic GFP in the gas phase
CASSCF(12/11)/cc-pVDZ
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Anionic GFP in the gas phase
CASSCF(12/11)/cc-pVDZ
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Anionic GFP in the gas phase
CASSCF(12/11)/cc-pVDZ
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Concluding examples
How does it work for large systems?

Practically useful tool - Quantum mechanical — molecular
mechanical (QM/MM) approach

~ Coupling




The results of QM/MM simulations: Geometry of the GFP active site

Experiment (PDB ID - 1GFL):
X-ray diffraction (PH 7, resolution 1.9A)

Theory: QM/MM (DFT(PBEO0/6-31G*)/Amber)
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What does happen upon
photoexcitation?
CASSCF(10/9)/6-31G*/AMBER results
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What does happen upon
photoexcitation? S17 4
CASSCF(10/9)/6-31G*/AMBER results
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What does happen upon
photoexcitation?
CASSCF(10/9)/6-31G*/AMBER results
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What does happen upon
photoexcitation?
CASSCF(10/9)/6-31G*/AMBER results
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Computer simulation

Illustrations

Software QM: GAMESS(US), Firefly, NWChem, CP2K
QM/MM: GAMESS(US)-Tinker




Concluding Remarks

e This is a part of the lecture course ‘Quantum Mechanics
and Molecular Structure’ for students of the Chemistry
Department of the M.V. Lomonosov Moscow State University

e Part of the tutorial lecture at the workshop
“Mathematical and Computational Approaches to Quantum
Chemistry (Institute of mathematics and its applications,
Minneapolis, 2008)

* Thanks to co-authors of the papers




