Transport across membranes Insights from Molecular Dynamics Simulations

Mounir Tarek

CNRS / Nancy Université

MSU, 2012

Membranes Structure

Two leaflets Electron-microscope

Investigate the structure and dynamics of membranes & associated membrane proteins

> Communication between Intra and extra cellular media

MD Simulations

Current applications

Electroporation

Drug permeation

Antimicrobial attack

Ionic transport

Peptide nanotubes

Signal transduction

Cellular excitability

G Protein Coupled Receptors

Ionic channels

Molecular Insights into electroporation and siRNA electrotransfer through model cell membranes

Lucie Delemotte

Equipe de Chimie et Biochimie Théoriques UMR Structure et Réactivité des Systèmes Moléculaires Complexes, Nancy

Laboratoire Européen Associé (France - Slovenia) "Pulsed Electric Fields Applications in Biology and Medicine" (LEA EBAM)

Electroporation

Electroporation affects the fundamental behavior of cells membranes since it disturbs transiently or permanently the integrity of their membranes

TRANSFER MOLECULES

IRREVERSIBLE: KILL MICRO-ORGANISMS

Lundqvist et al. PNAS 1998

Encycl. of Biomedical Engineering (John Wiley & Sons 2006)

Electroporation: historical background

~40 years-1st report of controlled <u>ELECTRO release</u> of intracellular compounds Neumann, E. and Rosenheck, K., J. Membr Biol. 10: 279-290, 1972

~ 30 years-1st report on gene <u>ELECTRO transfert</u>

Neumann, E., et al. EMBO J. 1: 841-845, 1982

~ 20 years-1st s *in-vitro* et *in-vivo* experiments combining ELECTROPORATION & bleomycin

Okino M., et al. Jpn J. Cancer Res 78: 1319-1321, 1987. Orlowski S., et al. Biochem. Pharma. 37: 4727-4733, 1988

~15 years-1st use of ELECTRO- chemotherapy in veterinary medici Mir L.M., et al. British J. Cancer 76: 1617-1622, 1997

Today: Electrochemotheray (melanoma, liver, ..) treatment in 80 Centers in El (IGR, ...)

> Advanced Electroporation Techniques in Biology and Medicine A. Pakhomov, D. Miklavcic and M. Markov, Editors,

Continuum models To optimize the technique **Treatment Planning**

Inderstand the process at the Molecular Model

 Nature of the phenomena as a function of electric pulses intensity and duration

MODELING (MD simulations)

COST 2012- 2016 + **ITN** in prep

Subject to electric field

Classical electroporation Low intensity E pulses (~KV/cm) (µs to ms)

$$\Delta \mathbf{V} = \frac{3}{2} ER \cos \varphi [1 - \exp(-t/\tau_m)],$$

T effects ? ?

T. Napotnik et al. Med Biol. Eng. Comput. (2010) 48:407–41

Modeling nano-pulses

Effect of nanopulses on lipid membranes

Tieleman P BMC Biochemistry **2004** Tarek M. *Biophys. J.* **2005**

Electrostatic properties

No electric field

High electric field .

Delemotte et al. J Membr. Biol. 2012

Effect of nanopulses on lipid membranes

<u>Time scales</u>

Nanosecondes to electroporate simples (lipid) membranes

1.5 to 2.5 Volts (Transmembrane voltage)

10 ns pore resealing(Vernier and Ziegler, 2007; Bockmann et al., 2008)

Pore sizes

2 - 10 nm diameter

Tarek M. *Biophys. J.* **2005** Tarek, M., & Delemotte, L. (**2010**). Electroporation of lipid membranes. In **Advanced Electroporation Techniques in Biology and Medicine** A.Pakhomov, D. Miklavcic and M. Markov, Editors. (Taylor and Francis/CRC Press). Delemotte L & Tarek M. *J. Membr. Biol.* **2012**

Small interfering RNA (siARN)

SiRNA

mediate sequence-specific gene expression

Paganin-G et al. PNAS 2011

Classical Electroporation Transfert :ms

r(GCUACGGGCAGCAGAACCC)d(TT)-5'(GGGUUCUGCUGCCCGUAGC)d(TG)

Tarek M. *Biophys. J.* **2005**

Small interfering RNA (siARN)

Time for translocation < 10 ns

Experiment

Marie Breton, Lluis M. Mir

Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR8203, **Université Paris-Sud, CNRS,**

Giant Unilamellar vesicles (GUV) Diameter 10-100 µ (~ 20 µ) (lipid DOPC)

+ IMAGING

Transmission microscopy

1 single 10 ns pulse is able to electroporate the liposome

Confocal Microscopy

GUV lipid: DOPC - Rhodamine- (Red Fluorescence)

siRNA -FITC fluorecine isothiocyanate) (Green Fluorescence)

RNA adsorbs at the VUG

Electrophoresis ⇒ strong interactions with lipid head groups positive charges

Optimise electro-transfer?

Several consecutive pulses of 2 to 4 ns delayed by > 100 ns

Under experimental investigation

Conclusions

Combining Modeling and Experiments Characterize the molecular mechanisms involved in plasmids Electro transfer

Open new venues for application of Nanosecond electric pulses

Next: From GUVs to cells, complex lipids, side effects,

European Laboratory of Pulsed Electric Fields Applications in Biology and Medicine

Unpublished

É

Transport of functionalized nanostructures through model cell membranes:

Ammonium based cationic peptide CCNCCOCCOCCONH3+,

Pantarotto et al. 2004 Angew. Chem. Int. Ed. 43, 5242.

Table 3. Characteristics of functionalised carbon nanotubes,

	Nanotubes	
Shape	Tubular/cylindrical	
Dimensions	Diameter: 1 – 100 nm Length: 0.01 – several microns/mm	
Hybridisation	sp²	
Non-covalent functionalisation	Yes	
Covalent functionalisation	Yes	
Biocompatibility	Yes	
Biodegradability	None	
Cell uptake	Good	
Cytotoxicity	Very low*	
In vivo organ accumulation	Yes	
Rapid elimination	Yes	

*Assessed in vitro and in vivo.

Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells

NANO LETTERS

2006 Vol. 6, No. 7 1522–1528

Hélène Dumortier,*.† Stéphanie Lacotte,† Giorgia Pastorin,† Riccardo Marega,‡ Wei Wu,† Davide Bonifazi,‡ Jean-Paul Briand,† Maurizio Prato,*.‡ Sylviane Muller,† and Alberto Bianco*.†

Functionalied C_{60} placed near a lipid bilayer

Free energy calculations to estimate the barrier to translocation

Free energy Calculations to estimate the barrier to translocation

Kraszewski, Tarek et al. ACS Nano 2011

Nanoneedle Cell Penetration of Carbon Nanotubes Pantarotto D et al. Angew. Chem. Int. Ed. 2004, 43, 5242

MD simulation 100 ns time scale

CNT(6,6) Diameter 8 Å (caped) + CCNCCOCCOCNH3+,

MD simulation 100 ns time scale

1F / 150 C

Deprotonation of the peptides as they reach the interface

moleclular system	system description	total simulation time [ns]
(1)	non functionalized closed CNT	509
(2)	low degree side functionalized closed CNT	423
(3)	low degree side and edges functionalized closed CNT	395
(4)	highly side functionalized closed CNT	779
(5)	explicitly H-ended open CNT	443
(5)'	open CNT non explicitly H-ended	200
(6)	low degree functionalized, open CNT non explicitly H- ended	142
(7)	explicitly H-ended, highly functionalized open CNT	466

Kraszewski, Tarek et al. PLOS One 2012

Acknowledgements:

S. Kraszewski, C. Ramseyer Université Besonçon

Discussions A. Bianco (ULP Strasbourg)

