Квантовые кооперативные явления в металлоксидных соединениях

М.М. Маркина

Квантовые кооперативные явления

К основным направлениям исследований в физике низких температур относятся работы по изучению квантовых кооперативных явлений в конденсированных средах.

Эти явления – сверхтекучесть, сверхпроводимость, магнетизм, волны зарядовой плотности – имеют место благодаря взаимно согласованному поведению огромного числа частиц (электронов).

Эти явления, за исключением сверхтекучести, разыгрываются в твердых телах, образованных одинаковыми, а чаще разными, атомами.

Имея базовые представления о свойствах атомов, можно продвигаться к пониманию их взаимодействий и, в конечном счете, выйти на тот рубеж, где макроскопические явления связываются с микроскопическим строением вещества.

На этом рубеже и находится современная физика.

Квантовые числа

Для описания состояния электрона в атоме принято использовать следующий набор параметров. Энергия электрона в атоме характеризуется главным квантовым числом n.

Значению n=1 соответствует одно состояние электрона, т.е. одна волновая функция.

Любому n>1 соответствует несколько различных состояний электрона. В этом случае энергетический спектр системы является вырожденным, а число разных состояний, соответствующих этому уровню, называется кратностью вырождения.

Состояние с определенным значением импульса характеризуется орбитальным квантовым числом l. Момент импульса электрона в атоме водорода как функция орбитального квантового числа записывается в виде:

$$|M| = \hbar \sqrt{l(l+1)}$$

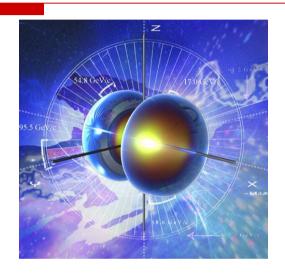
При этом l может принимать только значения, меньшие $n: 0 \le l < n$

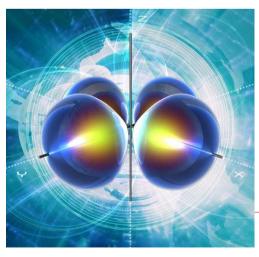
Квантовые числа

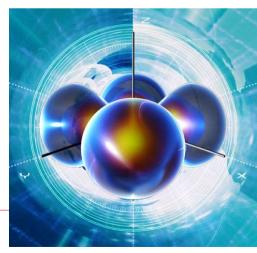
При l > 0 определенной паре значений квантовых чисел n и l соответствует 2l+1 независимых волновых функций. Эти функции выбирают так, чтобы соответствующие состояния имели определенное значение проекции момента импульса на некоторую ось.

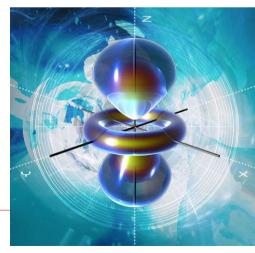
Каждое из состояний в этом случае может быть охарактеризовано определенным квантовым числом m_1 , называемым магнитным квантовым числом. Проекция момента импульса на заданную ось:

$$M_{\rm z} = \hbar m_{\rm l}$$


Квантовое число m_1 может принимать целочисленные значения, удовлетворяющие неравенству: $-l \le m_1 \le l$


Квантовые числа n, l, m_l полностью определяют орбитальное состояние электрона. Т.е. каждому набору значений этих трех чисел соответствует одна и только одна волновая функция $\Psi(x,y,z)$.

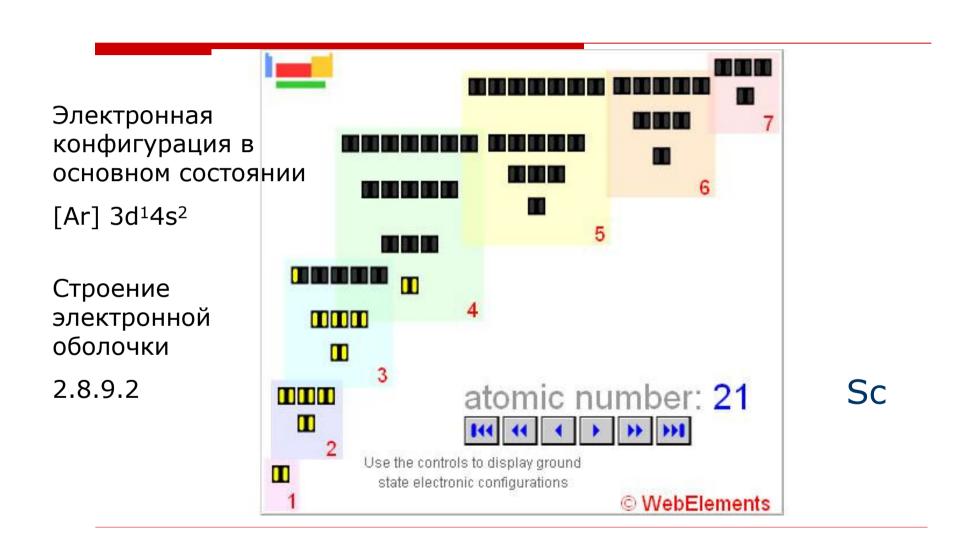

Спин электрона равен ½, а его проекция, описываемая спиновым квантовым числом $m_{\rm S}$ может принимать два значения $m_{\rm S} = \pm \frac{1}{2}$. С учетом спина кратность вырождения n-го уровня составляет $2n^2$.

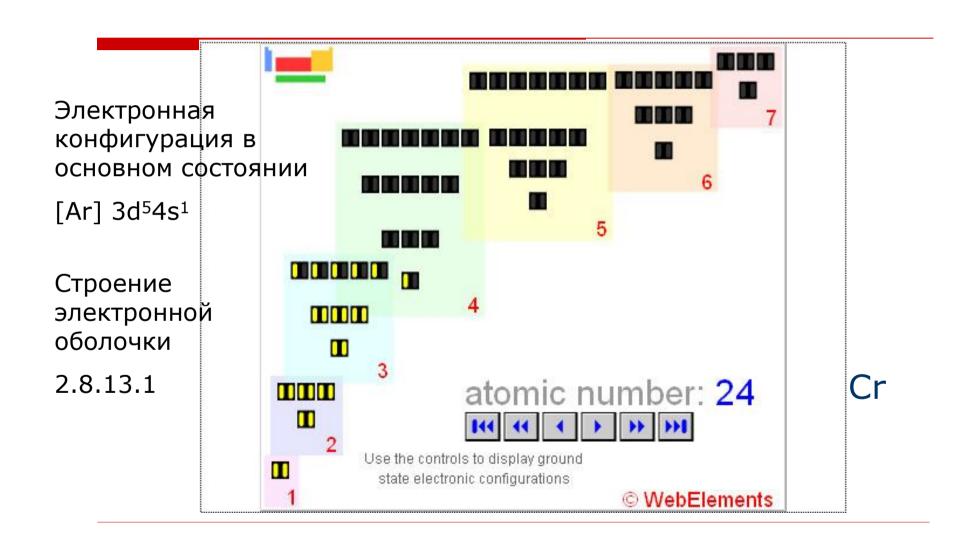

Атомные орбитали

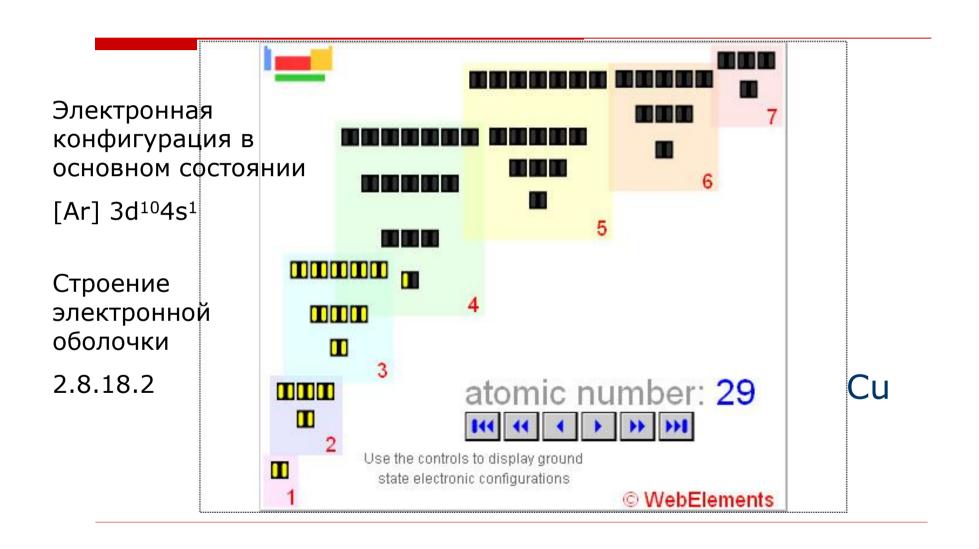
Ряд 3d металлов

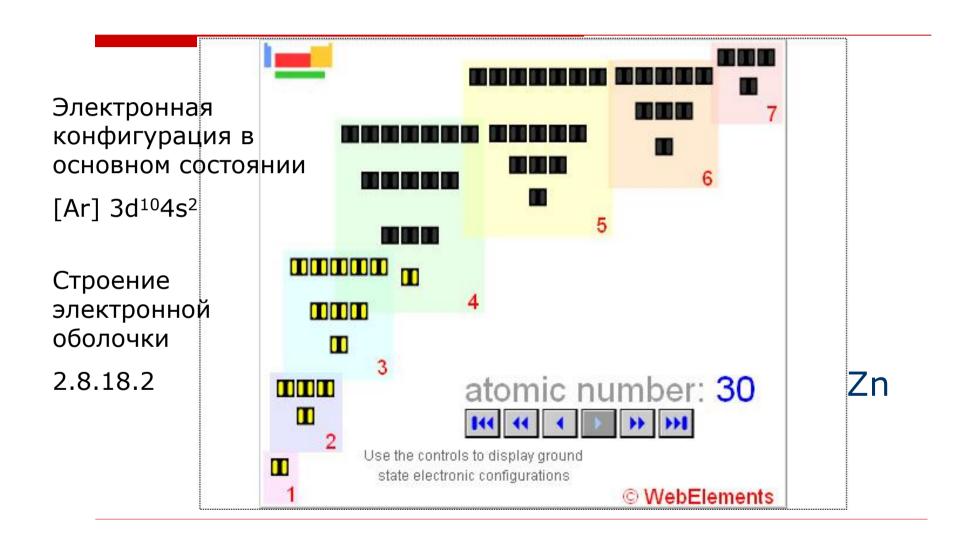
Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																			
	1																		2
1	Н																		He
7000	3	4												5	6	7	8	9	10
2	Li	Be												В	С	N	0	F	Ne
9,2316.5	11	12												13	14	15	16	17	18
3	Na	Mg												Al	Si	Р	S	Cl	Ar
	19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca		Sc	П	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	*	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ва		Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	**	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra		Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo
			*	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
*Lant	hanoi	ds		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
			**	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
**Ac	ctinoid	S		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		

The Orbitron gallery of atomic orbitals - the periodic table on the web: www.webelements.com


Ряд 3d металлов


Ряд 3d переходных металлов: от Sc до Zn идет заполнение внутренней 3d оболочки электронами, внешняя 4s оболочка уже заполнена. В металлооксидных соединениях, содержащих ионы 3d металлов, магнетизм вызван наличием суммарного магнитного момента незаполненной оболочки.


Строение 3d металла:


 $1s^2 \ 2s^2p^6 \ 3s^2p^6$ dn $4s^2$

Полностью заполненные оболочки – ядро Ar

Ионная связь

Один из видов химической связи, в основе которого лежит электростатическое взаимодействие между противоположно заряженными ионами. Как правило, эта связь формируется между атомами с большим различием электроотрицательности. Общая электронная пара полностью переходит к более электроотрицательному атому.

Такие связи в сравнительно чистом виде образуются в галогенидах щелочных металлов, например КF, так как атомы щелочных металлов имеют по одному слабо удерживаемому электрону (энергия связи примерно 3-5 эв), а атомы галогенов обладают наибольшим сродством к электрону.

Для описываемых в рамках курса металлооксидов ионная связь является основным видом взаимодействия металла и кислорода.

$$M + O \rightarrow M^{2+}O^{2-}$$

Sc_2O_3	TiO	VO	Cr ₃ O ₄	MnO	FeO	СоО	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V_2O_3	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	T. O	N/ O	G 0) ()	Б. О				
	$\begin{array}{ c c } Ti_3O_5 \end{array}$	V_3O_5	CrO ₂	Mn_2O_3	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V_2O_5		Mn ₂ O ₇					

Sc_2O_3	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn_2O_3	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V_2O_5		Mn_2O_7					
3d ¹ 4s ²	3d ² 4s ²	3d ³ 4s ²	3d⁵4s¹	3d ⁵ 4s ²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d¹04s¹	3d¹04s²

Sc_2O_3	TiO	vo	MnO	FeO	CoO	NiO	ZnO
$Sc_2^{3+}O_3^{2-}$	Ti ²⁺ O ²⁻	V ²⁺ O ²⁻	Mn ²⁺ O ²⁻	Fe ²⁺ O ²⁻	Co ²⁺ O ²⁻	Ni ²⁺ O ²⁻	Zn ²⁺ O ²⁻
Sc ³⁺	Ti ²⁺	V ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Zn ²⁺
S = 0	S = 1	S = 3/2	S = 5/2				S = 0
Нет							Нет
	3d ²	3d ³	3d⁵	3d ⁶	3d ⁷	3d ⁸	3d ¹⁰

			_	_
		\blacksquare	\blacksquare	A
T	T	T	T	T
•	•	•	-	•

Sc_2O_3	TiO	vo	MnO	FeO	CoO	NiO	ZnO
$Sc_2^{3+}O_3^{2-}$	Ti ²⁺ O ²⁻	V ²⁺ O ²⁻	Mn ²⁺ O ²⁻	Fe ²⁺ O ²⁻	Co ²⁺ O ²⁻	Ni ²⁺ O ²⁻	Zn ²⁺ O ²⁻
Sc ³⁺	Ti ²⁺	V ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Zn ²⁺
S = 0	S = 1	S = 3/2	S = 5/2				S = 0
Нет							Нет
	3d ²	3d ³	3d⁵	3d ⁶	3d ⁷	3d ⁸	3d ¹⁰

Sc_2O_3	TiO	VO	MnO	FeO	CoO	NiO	ZnO
$Sc_2^{3+}O_3^{2-}$	Ti ²⁺ O ²⁻	V ²⁺ O ²⁻	Mn ²⁺ O ²⁻	Fe ²⁺ O ²⁻	Co ²⁺ O ²⁻	Ni ²⁺ O ²⁻	Zn ²⁺ O ²⁻
Sc ³⁺	Ti ²⁺	V ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Zn ²⁺
S = 0	S = 1	S = 3/2	S = 5/2	S=2			S = 0
Нет							Нет
	3d ²	3d³	3d⁵	3d ⁶	3d ⁷	3d ⁸	3d ¹⁰

Sc_2O_3	TiO	VO	MnO	FeO	CoO	NiO	ZnO
$Sc_2^{3+}O_3^{2-}$	Ti ²⁺ O ²⁻	V ²⁺ O ²⁻	Mn ²⁺ O ²⁻	Fe ²⁺ O ²⁻	Co ²⁺ O ²⁻	Ni ²⁺ O ²⁻	Zn ²⁺ O ²⁻
Sc ³⁺	Ti ²⁺	V ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Zn ²⁺
S = 0	S = 1	S = 3/2	S = 5/2	S=2	S = 3/2	S = 1	S = 0
Нет							Нет
	3d ²	3d³	3d⁵	3d ⁶	3d ⁷	3d ⁸	3d ¹⁰

Sc_2O_3	TiO	VO	MnO	FeO	CoO	NiO	CuO	ZnO
$Sc_2^{3+}O_3^{2-}$	Ti ²⁺ O ²⁻	V ²⁺ O ²⁻	Mn ²⁺ O ²⁻	Fe ²⁺ O ²⁻	Co ²⁺ O ²⁻	Ni ²⁺ O ²⁻	Cu ²⁺ O ²⁻	Zn ²⁺ O ²⁻
Sc ³⁺	Ti ²⁺	V ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺
S = 0	S = 1	S = 3/2	S = 5/2	S=2	S = 3/2	S = 1		S = 0
Нет								Нет
	3d²	3d ³	3d⁵	3d ⁶	3d ⁷	3d ⁸	3d¹04s¹	3d ¹⁰

Sc_2O_3	TiO	VO	MnO	FeO	CoO	NiO	CuO	ZnO
$Sc_2^{3+}O_3^{2-}$	Ti ²⁺ O ²⁻	V ²⁺ O ²⁻	Mn ²⁺ O ²⁻	Fe ²⁺ O ²⁻	Co ²⁺ O ²⁻	Ni ²⁺ O ²⁻	Cu ²⁺ O ²⁻	Zn ²⁺ O ²⁻
Sc ³⁺	Ti ²⁺	V ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺
S = 0	S = 1	S = 3/2	S = 5/2	S=2	S = 3/2	S = 1	S = 1/2	S = 0
Нет								Нет
	3d²	3d ³	3d⁵	3d ⁶	3d ⁷	3d ⁸	3d ⁹	3d ¹⁰

Sc ₂ O ₃	TiO	vo	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V_2O_3	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V_3O_5	CrO ₂	Mn_2O_3	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V_2O_5		Mn_2O_7					
3d ¹ 4s ²	3d ² 4s ²	3d ³ 4s ²	3d ⁵ 4s ¹	3d ⁵ 4s ²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d¹04s²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V_3O_5	CrO ₂	Mn_2O_3	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V_2O_5		Mn_2O_7					
3d ¹ 4s ²	3d ² 4s ²	3d ³ 4s ²	3d⁵4s¹	3d ⁵ 4s ²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰	3d ¹⁰ 4s ²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V_2O_3	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V_3O_5	CrO ₂	Mn_2O_3	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V_2O_5		Mn ₂ O ₇					
3d ¹ 4s ²	3d ² 4s ²	3d ³ 4s ²	3d ⁵ 4s ¹	3d ⁵ 4s ²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d¹04s¹	3d ¹⁰ 4s ²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ ³⁺ O ₃	$V_2^{3+}O_3$	Cr ₂ ³⁺ O ₃	Mn_3O_4	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ ³⁺ O ₃	CuO	
	Ti ₃ O ₅	V_3O_5	CrO ₂	$Mn_2^{3+}O_3$	Fe ₂ 3+O ₂				
	11305	1305		2 3	-2 -3				
	TiO ₂	VO_2	CrO ₃	MnO_2					
		V ₂ O ₅		Mn_2O_7					
	3d¹	3d²	3d³	3d ⁴	3d ⁵		3d ⁷		

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V_3O_5	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V_2O_5		Mn_2O_7					
3d ¹ 4s ²	3d ² 4s ²	3d ³ 4s ²	3d⁵4s¹	3d ⁵ 4s ²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d¹04s¹	3d¹04s²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V_2O_3	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V_3O_5	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V_2O_5		Mn_2O_7					
3d ¹ 4s ²	3d ² 4s ²	3d ³ 4s ²	3d ⁵ 4s ¹	3d ⁵ 4s ²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d¹º4s¹	3d¹04s²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V_2O_3	Cr ₂ O ₃	Mn_3O_4	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V_3O_5	Cr ⁴⁺ O ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	11305	1305	0. 02	1111203					
	Ti ⁴⁺ O ₂	V ⁴⁺ O ₂	CrO ₃	Mn ⁴⁺ O ₂					
		V_2O_5		Mn_2O_7					
		205		7					
		3d¹	3d ²	3d ³					

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V_2O_5		Mn_2O_7					
3d ¹ 4s ²	3d ² 4s ²	3d ³ 4s ²	3d ⁵ 4s ¹	3d ⁵ 4s ²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d¹04s²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V_3O_5	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	Cr ⁶⁺ O ₃	MnO ₂					
		V ₂ ⁵⁺ O ₅		Mn ₂ ⁷⁺ O ₇					
3d ¹ 4s ²	3d ² 4s ²				3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d¹04s¹	3d ¹⁰ 4s ²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V_2O_3	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V_3O_5	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V_2O_5		Mn ₂ O ₇					
3d ¹ 4s ²	3d ² 4s ²	3d ³ 4s ²	3d ⁵ 4s ¹	3d ⁵ 4s ²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d¹04s¹	3d ¹⁰ 4s ²

$$Ti_2^{3+}Ti^{4+}O_5$$

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V_2O_3	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V_3O_5	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V_2O_5		Mn ₂ O ₇					
3d¹4s²	3d ² 4s ²	3d ³ 4s ²	3d ⁵ 4s ¹	3d ⁵ 4s ²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d¹04s²

Соединения со смешанной валентностью

$${\rm Ti_3O_5} o {\rm Ti_2}^{3+} {\rm Ti^4+O_5}$$
 свободный ион Ti: ${\bf 3d^24s^2}$ ${\rm Ti^{4+}}$ - немагнитный ${\rm Ti^{3+}}$ - ${\bf 3d^1}$, S - ${1\!\!\!/_{\!\!2}}$

$$V_3O_5 \rightarrow V_2^{3+}V^{4+}O_5$$
 свободный ион V: **3d³4s²** V^{4+} - 3d¹, S - ½ V^{3+} - 3d², S - 1

Соединения со смешанной валентностью

 $Cr_3O_4 \rightarrow Cr_2^{3+}Cr^{2+}O_4$ свободный ион $Cr: 3d^54s^1$ $Cr^{2+} - 3d^4, S - 2$ $Cr^{3+} - 3d^3, S - 3/2$ $Mn_3O_4 \rightarrow Mn_2^{3+}Mn^{2+}O_4$ свободный ион $Mn: 3d^54s^2$ $Mn^{2+} - 3d^5, S - 5/2$ $Mn^{3+} - 3d^4, S - 2$

 $Fe_3O_4 \rightarrow Fe_2^{3+}Fe^{2+}O_4$ свободный ион $Fe: 3d^64s^2$ $Fe^{2+} - 3d^6$, S-2 $Fe^{3+} - 3d^5$, S-5/2

 $\text{Co}_3\text{O}_4 \rightarrow \text{Co}_2^{3+}\text{Co}^{2+}\text{O}_4$ свободный ион Co: $\mathbf{3d^74s^2}$ Co^{2+} - $3d^7$, S - 3/2 Co^{3+} - $3d^6$, S - 2

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					

Магнитные свойства двойных оксидов

Тригональная модификация оксида титана ${
m Ti}_2{
m O}_3$ со структурой корунда упорядочивается антиферромагнитно при $T_{
m N}\sim470-520$ К.

Все оксиды ванадия антиферромагнетики: $T_N = 117$ К для **VO**, $T_N = 160$ К для V_2O_3 , $T_N = 343$ К для VO_2 .

Температура ферромагнитного упорядочения в диоксиде хрома ${\bf CrO_2}\ T_{\rm C}=394\ {\rm K}.$

Оксиды марганца антиферромагнитны: $T_{\rm N}=122~{\rm K}$ для MnO, $T_{\rm N}=80~{\rm K}$ для Mn₂O₃, $T_{\rm N}=84~{\rm K}$ для MnO₂. Смешанный оксид Mn₃O₄ упорядочивается ферримагнитно при $T_{\rm C}=40~{\rm K}$.

Магнитные свойства двойных оксидов

Оксид железа (II) **FeO** – АФМ $T_{\rm N}=198$ K, гематит α - **Fe₂O₃** со структурой корунда - АФМ $T_{\rm N}=953$ K. Смешанный оксид железа **Fe₃O₄** упорядочивается ферримагнитно при $T_{\rm C}=858$ K

Оксид кобальта **CoO** упорядочивается антиферромагнитно при $T_{\rm N} = 291~{\rm K.}~{\rm Co_2O_3}~{\rm -}$ немагнитный, поскольку кобальт находится в низкоспиновом состоянии.

Оксид никеля **NiO** - антиферромагнетик с $T_{\rm N} \sim 520$ K.

Оксид меди **CuO** - антиферромагнетик с $T_N = 230$ K.

Низкоспиновое состояние

Оксид кобальта Co_2O_3 : свободный ион Co: $3d^74s^2$

 $Co^{3+} - 3d^6$, S - 2

Окружающие кобальт ионы кислорода создают кристаллическое поле (поле лигандов). Электроны кобальта на 3d оболочке отталкиваются от электронов кислорода. В результате уровни, различающиеся по форме орбиталей, могут расщепиться на две группы.

Низкоспиновое состояние

Оксид кобальта Co_2O_3 : свободный ион Co: $3d^74s^2$

 $Co^{3+} - 3d^6$, S - 2

Такое расщепление уровней наблюдается в кислородном октаэдре.

Три нижних уровня соответствуют орбиталям d_{xy} , d_{xz} , d_{yz} , которые не направлены на ионы кислорода, соответственно, отталкивание на них меньше. Лепестки орбиталей $d_{x^2-y}^2$ и $d_{z^2}^2$ направлены на кислород, и отталкивание на них больше, то есть электронам менее «удобно» их занимать.

Если расщепление уровней достаточно велико, то электроны перегруппируются, чтобы занять уровни с минимальной энергией.

Низкоспиновое состояние

Оксид кобальта Co_2O_3 : свободный ион Co: $3d^74s^2$

 $Co^{3+} - 3d^6$, **S** – **0**

При этом будет нарушено правило Хунда – заполнение оболочки с максимальным спином. Нарушение правила Хунда должно компенсироваться существенным выигрышем в энергии.

Как правило, расщепление уровней невелико, и низкоспиновое состояние наблюдается в редчайших случаях.

Магнетизм в твердых телах

Свободный электрон:

Спин – собственный механический момент, обладает магнитным моментом

Электронная оболочка атома:

Орбитальному механическому моменту электрона на оболочке атома соответствует орбитальный магнитный момент

Атомные ядра:

Протон и нейтрон обладают магнитным моментом

Спиновый магнитный момент

Спин электрона s=1/2 в единицах \hbar , $m_S=\pm 1/2$ - магнитное квантовое число

$$|\vec{s}| = \hbar \sqrt{s(s+1)}$$
 - абсолютная величина спина

$$s_z=\hbar m_S=\pm rac{\hbar}{2}$$
 - проекция спина на ось z

Спиновый магнитный момент

Спин электрона s=1/2 в единицах \hbar , $m_S=\pm 1/2$ - магнитное квантовое число

$$|\vec{s}| = \hbar \sqrt{s(s+1)}$$
 - абсолютная величина спина

$$s_z = \hbar m_S = \pm \frac{\hbar}{2}$$
 - проекция спина на ось z

Спину – собственному механическому моменту - соответствует спиновый магнитный момент

$$|\mu_z| = \sqrt{3} \, \mu_B$$
 - абсолютная величина спинового магнитного момента $\mu_z^{\langle S \rangle} = \pm \, \mu_B$ - проекция спинового магнитного момента на ось z

Магнетон Бора:
$$\mu_B = \frac{|e|\hbar}{2mc} = 0.927*10^{-20} \text{ эрг/ }\Gamma c$$

Спиновый магнитный момент

Гиромагнитное отношение для спина:

Отношение спинового магнитного момента к электрона к величине спина (механического момента)

$$g_s' = \left| \frac{\mu_s}{s} \right| = \frac{|e|}{mc}$$

 $g_{\rm s}=2$ - спиновое магнетомеханическое отношение

$$\mu_{z}^{\langle S \rangle} = \pm \mu_{B} = \pm \frac{e}{mc} \frac{\hbar}{2} \qquad \qquad \mu_{z}^{\langle S \rangle} = g_{s} m_{s} \mu_{B}$$

$$\mu_{B} = \frac{|e|\hbar}{2mc}$$

Орбитальный магнитный момент

Электрон в атоме: n, l, m_l , m_s

 $|M_L| = \hbar \sqrt{l(l+1)}$ - абсолютная величина механического орбитального момента $M_Z^{\langle L \rangle} = m_l \, \hbar$ - проекция орбитального момента на ось z

Орбитальный магнитный момент

Электрон в атоме: n, l, m_l , m_s

$$|M_L| = \hbar \sqrt{l(l+1)}$$
 - абсолютная величина механического орбитального момента $M_Z^{\langle L \rangle} = m_l \, \hbar$ - проекция орбитального момента на ось z

Орбитальному механическому моменту соответствует орбитальный магнитный момент

$$\mu^{\langle l \rangle} = \frac{\left| e \right|}{2mc} M_L$$
 - абсолютная величина орбитального магнитного момента

Орбитальный магнитный момент

Гиромагнитное отношение для орбитального движения:

Отношение орбитального магнитного момента к электрона к величине орбитального момента движения

$$g_l' = \left| \frac{\mu^{\langle l \rangle}}{M_L} \right| = \frac{|e|}{2mc}$$

 $g_l = 1$ - орбитальное магнетомеханическое отношение

$$\mu_z^{\langle l \rangle} = \frac{|e|}{2mc} m_l \hbar = m_l \ \mu_B \qquad \Longrightarrow \qquad \mu_z^{\langle l \rangle} = g_l \ m_l \ \mu_B$$

Оболочка многоэлектронного атома

LS-связь – орбитальные и спиновые моменты отдельных электронов складываются в результирующие моменты:

$$\boldsymbol{L} = \Sigma \boldsymbol{l}_i \ \bowtie \ \boldsymbol{S} = \Sigma \boldsymbol{s}_i.$$

Полный момент количества: J = L + S.

Электростатическое взаимодействие между электронами в оболочке значительно больше магнитного спин-орбитального взаимодействия. Разности энергий состояний оболочки с различными \boldsymbol{L} и \boldsymbol{S} заметно больше, чем разности энергий состояний с различными \boldsymbol{J} – различными взаимными ориентациями \boldsymbol{L} и \boldsymbol{S} .

Энергия спин-орбитального взаимодействия: λ **L-S.**

Энергетический уровень для какого-то возможного **J**:

$$\varepsilon = \frac{1}{2}\lambda \left[J(J+1) - L(L+1) - S(S+1) \right]$$

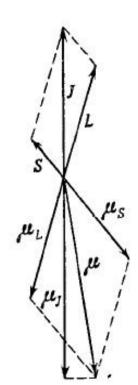
Оболочка многоэлектронного атома

ЈЈ-связь – в оболочках тяжелых химических элементов спинорбитальная связь очень велика, поэтому векторы l_i и s_i отдельных электронов сначала складываются между собой:

$$j_i = l_i + s_i,$$

а затем происходит суммирование j_i в суммарный момент атома:

$$\boldsymbol{J}=\Sigma \boldsymbol{j}_{i}.$$


$$\mu_J = \mu_L \cos(\mathbf{L}, \mathbf{J}) + \mu_S \cos(\mathbf{S}, \mathbf{J})$$

$$\mu_L = \sqrt{L(L+1)}\mu_B$$
, $\mu_S = \sqrt{S(S+1)}\mu_B$

$$\mu_J = g_J \sqrt{J(J+1)} \mu_B$$
, ∂e

$$g_J = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$
 -

фактор Ланде электронной оболочки

Эффективный магнитный момент атома – максимальное положительное значение проекции на направление магнитного поля:

$$(\mu_J)_{\text{макс}} = g_J J \mu_B$$

$$g_J=1+rac{J(J+1)+S(S+1)-L(L+1)}{2J(J+1)}$$
 $a)$ $S=0$ $\Rightarrow J=L$ чисто орбитальный магнетизм $g_{J=L}=1+rac{L(L+1)-L(L+1)}{2L(L+1)}=1$ (g_L)

$$b) \quad L=0 \quad \Rightarrow J=S \qquad \text{чисто спиновый магнетизм}$$

$$g_{J=S}=1+\frac{S(S+1)+S(S+1)}{2S(S+1)}=1+1=2 \quad \ (g_S)$$

В металлооксидах как правило L = 0 – орбитальный магнитный момент «заморожен» кристаллическим полем, и работает вариант b)

Эффективный магнитный момент:

$$\mu_{eff} = g_S \mu_B \sqrt{S(S+1)}$$

Сравниваем оценку по этой формуле с оценкой, полученной в эксперименте по исследованию температурной зависимости магнитной восприимчивости $\chi(T)$.

Намагниченость насыщения (максимальная):

$$\mu_S = g_S \mu_B S$$

Сравниваем оценку по этой формуле с оценкой, полученной в эксперименте по исследованию полевой зависимости магнитного момента M(H).

Эффективный магнитный момент:

$$\mu_{eff} = g_S \mu_B \sqrt{S(S+1)}$$

MnO: Mn^{2+} $3d^54s^2 \rightarrow 3d^5$ S = 5/2

Намагниченость насыщения (максимальная):

$$\mu_S = g_S \mu_B S$$

Эффективный магнитный момент:

$$\mu_{\it eff} = g_{\it S} \mu_{\it B} \sqrt{S(S+1)}$$
 MnO: Mn²⁺ 3d⁵4s² \rightarrow 3d⁵ S = 5/2
$$\mu_{\it eff} = g_{\it S} \mu_{\it B} \sqrt{\frac{5}{2} \left(\frac{5}{2} + 1\right)} = g_{\it S} \mu_{\it B} \sqrt{\frac{35}{4}} = \mu_{\it B} \sqrt{35} \approx 5.9 \mu_{\it B}$$

Намагниченость насыщения (максимальная):

$$\mu_S = g_S \mu_B S$$

Эффективный магнитный момент:

$$\mu_{\it eff}=g_{\it S}\mu_{\it B}\sqrt{S(S+1)}$$
 MnO: Mn²⁺ 3d⁵4s² \rightarrow 3d⁵ S = 5/2
$$\mu_{\it eff}\approx 5.9\mu_{\it B}$$

Намагниченость насыщения (максимальная):

$$\mu_S=g_S\mu_B S$$
 MnO: Mn^2+ 3d^54s^2 \rightarrow 3d^5 S = 5/2
$$\mu_S=g_S\mu_B\frac{5}{2}=5\mu_B$$

Правила Хунда

- 1) Наименьшей энергией обладает терм с наибольшим значением суммарного спина S и с наибольшем при этом S значением суммарного орбитального момента L.
- 2) Если L и S не равны нулю, то наименьшей энергией обладает уровень с J = |L-S| (если уровень заполнен меньше, чем наполовину) или с J = L + S (если уровень заполнен больше, чем наполовину)

Терм - электронная конфигурация, определяющая энергетический уровень атома или молекулы.

Магнитные моменты нуклонов

Протоны и нейтроны обладают спинами и собственными магнитными моментами, которые служат источниками ядерного магнетизма.

По аналогии с электроном можно было бы ожидать, что протон - заряженная частица со спином ½, будет обладать магнитным моментом равным $\sqrt{3}\mu_{\rm яд}$, где

$$\mu_{_{\mathcal{A}\mathcal{O}}} = \frac{\left| e \right| \hbar}{2Mc} = \frac{1}{1836} \mu_{_{B}}$$

Оказалось, что магнитные моменты протона и нейтрона равны соответственно:

$$\mu_p = 2.79 \, \mu_{_{R\partial}}, \quad \mu_n = 1.91 \mu_{_{R\partial}}$$

Магнитные моменты атомных ядер

Z	Ядро	A	I	μ, μ _{яд}
22 23 24 25 26 27 28 29 31	Ti V Cr Mn Fe Co	47 49 50 51 53 55 56* 56* 60* 61 63 69 71	5/2 7/2 6 7/2 3/2 5/2 3/2 4 7/2 5 3/2 3/2 3/2 3/2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
34	Se	80	ŏ' ¯	

Спин ядра *I* – полный момент количества движения, векторная сумма орбитальных моментов нуклонов и их спинов.

- 1. **Спин равен нулю** ядра с четным числом протонов (Z) и нейтронов (A-Z).
- 2. Нечетное A (массовое число)
 спин I = (n+1/2)ħ, где n
 = 0,1,2...
- 3. Ядра с нечетным числом протонов и нейтронов **спин** $I = n\hbar$, где n = 1,2,3...

$$G = \sqrt{I(I+1)}\hbar$$
, $\mu_I = g_{_{\mathcal{A}\partial}}\sqrt{I(I+1)}\mu_{_{\mathcal{A}\partial}}$

□ Перерыв

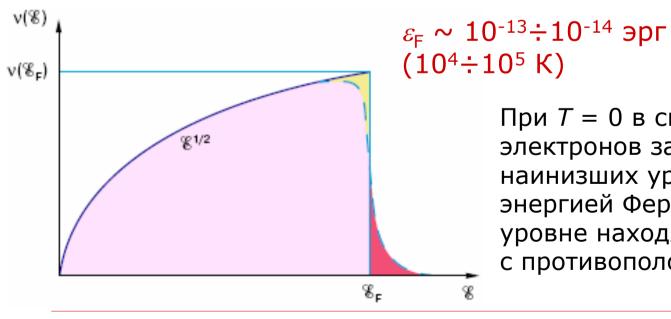
Основные типы магнитных состояний вещества

- 1. Магнетизм слабовзаимодействующих частиц диамагнетизм и парамагнетизм.
- 2. Магнетизм коллективизированных электронов отсутствие магнитного порядка.
- 3. Вещества с атомным магнитным порядком, обусловленным обменным взаимодействием.
- 4. Ядерный магнетизм.

Явление диамагнетизма

- Внешнее магнитное поле воздействует на движущиеся по орбитам электроны. В результате ларморовской прецессии орбит в поле, на каждом атоме возникает добавочный магнитный момент, направленный против поля (χ < 0).
- Диамагнетизм присущ всем атомам, ионам и молекулам, а также их коллективам жидкостям и газам. Как правило, это слабый по сравнению с парамагнетизмом эффект.
- Коллективизированные электроны диамагнетизм Ландау: движение электрона квантуется в направлении, перпендикулярном полю.
- В сверхпроводниках магнитная индукция равна нулю и формально $\chi = -(1/4 \pi)$.

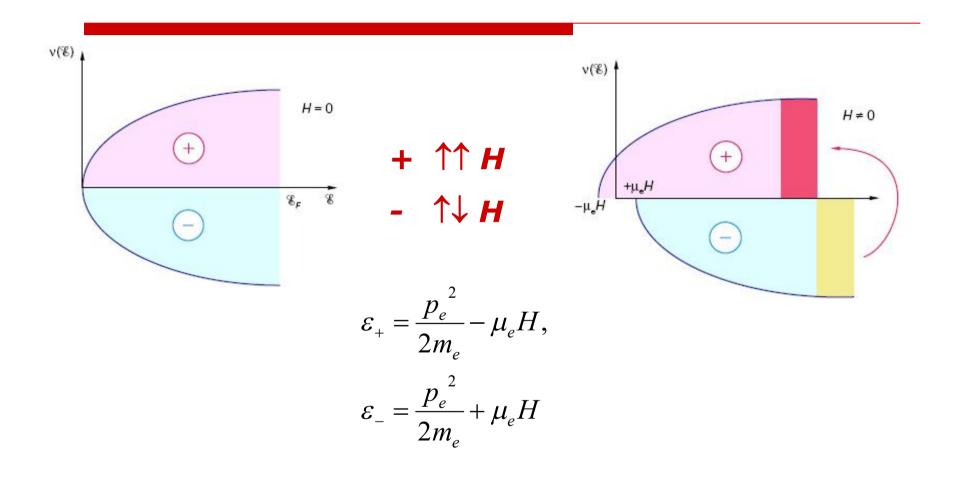
Явление парамагнетизма


Парамагнитные газы – восприимчивость мала, не зависит от магнитного поля, зависит от температуры по закону Кюри.

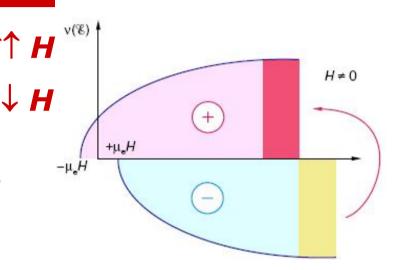
Ионный парамагнетизм (жидкие растворы переходных элементов, кристаллы с ионной или неполярной связью, растворы редкоземельных элементов, и пр.) – восприимчивость подчиняется закону Кюри Вейсса. В области высоких полей наблюдаются эффекты магнитного насыщения.

<u>Парамагнетизм</u> электронов проводимости – восприимчивость не зависит от магнитного поля, слабо зависит от температуры.

Парамагнетизм Паули


Вольфганг Паули (1890-1958), Нобелевская премия 1945 г. за открытие «Принципа запрета Паули»: два и более тождественных фермиона не могут одновременно находиться в одном квантовом состоянии.

При T=0 в системе N электронов заняты N/2 наинизших уровней до уровня с энергией Ферми $\varepsilon_{\rm F}$, на каждом уровне находятся два электрона с противоположными спинами.


Парамагнетизм Паули

Парамагнетизм Паули

Во внешнем магнитном поле H + $\uparrow \uparrow H$

$$M_p = \mu_e (N_+ - N_-)$$

из-за разницы количества электронов со спинами вверх и вниз:

$$\pm \mu_e H \frac{v(\varepsilon_F)}{2}$$

Величина магнитного момента и восприимчивость пропорциональны плотности состояний на уровне Ферми:

$$M_p = v(\varepsilon_F)\mu_e^2 H, \quad \chi = v(\varepsilon_F)\mu_B^2$$

Магнитная восприимчивость парамагнетика Паули (металла) не зависит от температуры.

Взаимодействие электронов

Электростатическое взаимодействие

Обменное взаимодействие
$$\varepsilon_{ex} = -\frac{1}{2}I\,\hat{S}_i\hat{S}_j$$

Обменное взаимодействие зависит от взаимной ориентации спинов электронов. Если I>0, то обменное взаимодействие стремится ориентировать спины электронов параллельно друг другу. Это ведет к усилению парамагнетизма.

$$\chi_{ex} = \frac{\chi_p}{(1 - \lambda \chi_p)}, \, \rho \partial e \quad \lambda = \frac{I}{\mu_B^2}$$

Критерий Стонера

При выполнении соотношения:

$$\lambda \chi_{\rm p} \ge 1 \ (I \ v (\varepsilon_{\rm F}) \ge 1)$$

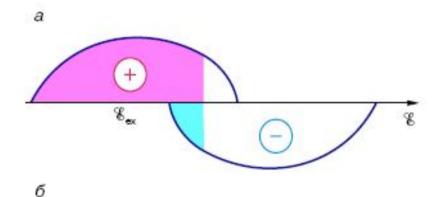
в системе коллективизированных электронов в нулевом магнитном поле возникает **ферромагнетизм**. Обменное взаимодействие изменяет энергии подзон (+) и (-), роль магнитного поля играет эффективное поле обменного взаимодействия:

$$H_{\rm mol} = \lambda M$$
 (молекулярное поле).

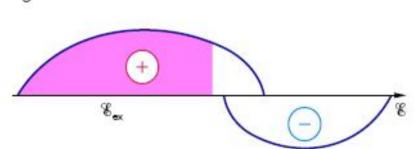
Критерий Стонера

При выполнении соотношения:

$$\lambda \chi_{p} \geq 1 \ (I \ v (\varepsilon_{F}) \geq 1)$$


в системе коллективизированных электронов в нулевом магнитном поле возникает **ферромагнетизм**. Обменное взаимодействие изменяет энергии подзон (+) и (-), роль магнитного поля играет эффективное поле обменного взаимодействия:

$$H_{\rm mol} = \lambda M$$
 (молекулярное поле).


Условие возникновения ферромагнетизма – большая величина параметра обменного взаимодействия и плотности состояний на уровне Ферми. Обменная энергия должна быть достаточно высока, чтобы скомпенсировать повышение кинетической энергии электронов, переходящих из одной подзоны в другую на более высокие уровни энергии.

Сильные и слабые ферромагнетики

а) слабые ферромагнетики – расщепление зон невелико. Во внешнем поле оставшиеся в (-) электроны переходят в (+).

б) сильный ферромагнетик – все электроны в подзоне (+). Внешнее магнитное поле не влияет на число электронов, магнитная восприимчивость равна нулю

Сдвиг подзон со спинами вверх и вниз – результат обменного взаимодействия в системе электронов проводимости.

Ферромагнетики в ряду 3d металлов

```
    а-Fe (феррит) 1043 К — точка Кюри (769 °C)
    Со 1394 К — точка Кюри (1121 °C)
    Ni 613 К — точка Кюри (340 °C)
```

Основной механизм формирования магнитного порядка – перекрывание волновых функции 3d-электронов соседних атомов.

Fe, Co, Ni — волновые функции 3d-электронов соседних атомов перекрываются и образуется система коллективизированных электронов 3d и s. Плотность энергетических состояний 3d-электронов на уровне Ферми высока, критерий Стонера выполняется.

Ферромагнетики в ряду 3d металлов

```
а-Fe (феррит) 1043 К — точка Кюри (769 °C)

Со 1394 К — точка Кюри (1121 °C)

Ni 613 К — точка Кюри (340 °C)

Ст 310 К — точка Нееля
```

Ферромагнетики в ряду 4f металлов

```
Gd 289 K — точка Кюри
Tb 223 K — точка Кюри
Dy 87 K — точка Кюри
Ho 20 K — точка Кюри
Er 19.6 K — точка Кюри
Tm 22 K — точка Кюри
```

Основной механизм формирования магнитного порядка – РККИ взаимодействие: 4f оболочка имеет небольшой размер, существенно меньше межатомного расстояния. Эти оболочки для соседних ионов не могут перекрываться. Обменное взаимодействие создают электроны проводимости, ушедшие с внешней s-оболочки.

Ферромагнетики в ряду 4f металлов

```
Gd 289 K — точка Кюри
```

Тb 223 K — точка Кюри

Dy 87 K — точка Кюри

Но 20 K — точка Кюри

Er 19.6 K — точка Кюри

Tm 22 K — точка Кюри

При более высоких температурах уже сформирован магнитный порядок, но магнитная структура является неколлинеарной

Антиферромагнетики в ряду 4f металлов

	$T_{\rm N}$, K	$T_{\rm C}$, K
Tb	230	223
Dy	179	87
Но	133	20
Er	85	19.6
Tm	60	22

В интервале между $T_{\rm N}$ и $T_{\rm C}$ наблюдается спиральная магнитная структура

Ниже $T_{\rm C}$ - ферромагнетизм

Металлы 3d, 4f

Электроны внешней s-оболочки – коллективизированные электроны проводимости. Электроны внутренних оболочек – локализованные магнитные моменты.

На языке зонной теории:

оболочка – локальные уровни, локализованные энергетические состояния;

электроны проводимости – энергетическая зона, делокализованные энергетические состояния

В металлах нет «чистых» локализованных состояний магнитных ионов. Поскольку существует взаимодействие электронных оболочек с электронами проводимости (s-d или s-f взаимодействие), то постоянно идет динамический процесс – туннелирование электронов.

s-d взаимодействие

- 1) Если уровни s и d перекрываются, то можно говорить о гибридизации электронных состояний (в случае слабого смешивания уровней s-d обменном взаимодействии).
- Туннелирование электрона: свободный электрон на короткое время оказывается в связанном состоянии на ионе, затем снова переходит в делокализованное состояние. За время пребывания на ионе электрон испытывает действие внутриатомных обменных сил, связывающих его с другими электронами на оболочке возникает общий магнитный момент иона.
- Магнитный ион в металле = d-электроны + s-электроны, связанные s-d обменным взаимодействием.
- 2) Если концентрация магнитных ионов велика, то незаполненные оболочки сливаются в узкую зону, то есть d-электроны делокализованы, локализованных магнитных моментов ионов нет.

Экранировка Кондо, компенсация Нагаоки

Спины s-электронов, окружающих магнитный ион, ориентируются антипараллельно суммарному магнитному моменту иона («антиферромагнитное» облако)
При понижении температуры ниже характерной:

T_{κ} – температуры Кондо

это облако частично нейтрализует магнитный момент иона (в пределе – уменьшает его до нуля).

Такую экранировку разрушает повышение температуры и наличие соседних электронных облаков, которые перекрывают друг друга.

Магнетизм коллективизированных электронов

Металл - сосуществование ионных магнитных моментов и делокализованных магнитных моментов электронов.

<u>Кулоновское отталкивание</u>: динамическое разрежение плотности заряда вокруг каждого электрона, независимо от ориентации спина (корреляционная дырка).

Обменные эффекты, обусловленные принципом Паули:

Электроны с параллельными спинами располагаются значительно дальше друг от друга, чем электроны с антипараллельными спинами. Энергия внутриатомного обменного взаимодействия $U \sim 1.5$ эВ/спин для 3d-электронов – разрежение электронного облака и ослабление кулоновского отталкивания (обменная дырка). Объяснение первого правила Хунда.

Магнетизм коллективизированных электронов

3d-металле постоянно происходит квантовое туннелирование электронов между энергетическими состояниями оболочки и делокализованными состояниями зоны. Чем уже ширина зоны, тем более локализованы в ней электроны. Если ширина зоны сравнима с энергией внутриатомного обменного взаимодействия U, то некоторые электроны остаются на ионе достаточно долго и успевают провзаимодействовать друг с другом, ориентировать магнитные моменты, так что у иона магнитный момент. Делокализованные электроны отталкиваются от группы электронов с ориентированными спинами – магнитный момент иона в 3d-металлах сохраняется. Магнетизм в такой конкуренции энергии обменного системе следствие взаимодействия и кинетической энергии электронов.