

Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ

Основы кинематической теории дифракции.

Теоретическая дифрактограмма.

Павел Чижов

Москва 2011. Курс для 415 группы Химического ф-та МГУ. Лекция 6.

- 1. Дифракция рентгеновского излучения (РИ) на протяженных объектах
- 2. Дифракция на 3D кристаллах.
- 3. Теоретическая дифрактограмма.

1. Дифракция РИ на протяженных объектах

Приближения кинематической теории дифракции РИ

- 1) $A_0 = \text{Const}$
- 2) Взаимодействие с ЭМ излучением не вносит возмущений в $\rho(r)$
- 3) Вторичное излучение не дифрагирует
- 4) Комптон и фотоэффект не вносят возмущений в упругое рассеяние

$$\hat{A} = \hat{A}_0 \int_V \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r}$$

$$(\mathbf{q} = \mathbf{k} - \mathbf{k'})$$

амплитуда рассеянного излучения пропорциональна соответствующей Фурьекомпоненте электронной плотности

1.1 Дифракция РИ на единичном атоме

Рассеяние протяженным объектом сферической симметрии (атомом).

1.2 Дифракция РИ на протяженной системе

 2θ

Система точечных рассеивателей (электронов):

$$\frac{d\varepsilon}{d\Omega} = I_0 n \left(\frac{q^2}{4\pi\varepsilon_0 mc^2}\right)^2 \frac{1+\cos^2 2\theta}{2}$$

С учетом интерференции вторичных волн:

$$A \mid \propto \frac{\sin N\varphi}{\sin \varphi}, \varphi = 4\pi \frac{a(1-\cos 2\theta)}{\lambda}$$

(Фактически, работаем с Фурьеобразом суммы δ-функций)

$$\hat{A}(\mathbf{q}) = \hat{A}_0 \int_V \rho(r) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r}$$

1.2 Дифракция РИ на протяженной системе

Как будет выглядеть «дифрактограмма» от бесконечной системы электронов?

Рассеиватели точечные – без учета поляризационного фактора интенсивности максимумов не зависят от угла

1.3 Дифракция РИ на системе атомов

Как будет рассеиваться РИ на системе <u>атомов</u>? Предположим, что электронная плотность системы: $\rho(\mathbf{r}) = \sum_{j} \rho_{atom}^{j} (\mathbf{r}_{atom} + \mathbf{r}_{j})$ Тогда Фурье-образ электронной плотности:

$$F(\mathbf{q}) = \int_{V} \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r} = \int_{V} \sum_{j} \rho_{atom}^{j} (\mathbf{r}_{atom} + \mathbf{r}_{j}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r} = \sum_{j} e^{i\mathbf{q}\mathbf{r}_{j}} \int_{V} \rho_{atom}^{j} (\mathbf{r}_{atom}) e^{iqr_{atom}} d\mathbf{r} = \sum_{j} e^{i\mathbf{q}\mathbf{r}_{j}} F_{atom}^{j} (\mathbf{q})$$

Т.е. амплитуда рассеяния на системе из атомов:

$$\hat{A}(\mathbf{q}) = \hat{A}_0 \sum e^{i\mathbf{q}\mathbf{r}_j} F_{atom}^{j}(\mathbf{q})$$

2.1 Дифракция РИ на 3D кристалле

А что будет, если система атомов – 3D кристалл?

$$\hat{A}(\mathbf{q}) = \hat{A}_0 \sum_{j} e^{i\mathbf{q}\mathbf{r}_j} F_{atom}^{j}(\mathbf{q})$$

Но множество векторов q: $q = ha^* + kb^* + lc^*$

(Закон Брегга)

Очевидно, что суммировании можно ограничиться единственной ячейкой, т.к.

$$F_{hkl} = \int_{\Omega} \rho(\mathbf{r}) e^{2\pi i (h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*)r} d\mathbf{r}, \quad \hat{A}_{hkl} = \hat{A}_0 F_{hkl}$$

(Ω – элементарная ячейка)

Тогда:

$$F_{hkl} = \sum_{j} e^{2\pi i (\mathbf{q}_{hkl})\mathbf{r}_{j}} F_{atom}^{j} (\mathbf{q}_{hkl}) = \sum_{j} e^{2\pi i (h\mathbf{a}^{*} + k\mathbf{b}^{*} + l\mathbf{c}^{*})(x_{j}\mathbf{a} + y_{j}\mathbf{b} + z_{j}\mathbf{c})} F_{atom}^{j} (\mathbf{q}_{hkl}) =$$
$$= \sum_{j} e^{2\pi i (hx_{j} + ky_{j} + lz_{j})} F_{atom}^{j} (\mathbf{q}_{hkl})$$

2.2 Структурная амплитуда

Итак:
$$\hat{A}_{hkl} = \hat{A}_0 F_{hkl}$$
 где $F_{hkl} = \sum_j e^{2\pi i (hx_j + ky_j + lz_j)} F_{atom}^j (\mathbf{q}_{hkl})$
В каких случаях это верно? Тогда, когда $\rho(\mathbf{r}) = \sum_j \rho_{atom}^j (\mathbf{r}_{atom} + \mathbf{r}_j)$

Что может нарушать это соотношение?

- **1.** Перераспределение *ρ*(r) в результате химических взаимодействий
- 2. Тепловое движение атомов в кристалле
- 3. Наличие упорядоченных дефектов

2.3 Параметры атомного смещения

Атом колеблется относительно равновесного положения:

$$\rho_{atom}^{osc}(\mathbf{r}) = \int_{W} \rho_{atom}(\mathbf{r} - \mathbf{r}_{ref}) w(\mathbf{r}_{ref}) d\mathbf{r}_{ref} = \rho_{atom} * w$$

где $w(\mathbf{r}_{ref})$ – плотность вероятности пребывания атома в точке $\mathbf{\underline{r}}_{ref}$

Ситуация сильно упрощается:

$$F\rho_{atom}^{osc}(\mathbf{r}) = F\rho_{atom} \times Fw$$

Тогда для каждого атома действительно будет существовать t(q):

$$t(q_{hkl}) = \int_{V} w(\mathbf{r}) e^{i\mathbf{q}_{hkl}\mathbf{r}} d\mathbf{r}$$

В самом простом варианте плотность вероятности сферически симметрична

$$t_{j}\left(\frac{\sin\theta}{\lambda}\right) = \exp\left(-B_{j}\frac{\sin^{2}\theta}{\lambda^{2}}\right) = \exp\left(-8\pi^{2}\left(U_{j}\right)^{2}\frac{\sin^{2}\theta}{\lambda^{2}}\right)$$

U_j – среднеквадратичное отклонение от положения равновесия

2.3 Atomic Displacement Parameters (APD's)

Параметр атомного смещения («тепловой параметр») – В или U

$U = 0.001 - 0.06 \text{ Å}^2$, $B = 0.1 - 5 \text{ Å}^2$, $B = 8\pi^2 U \cong 80 U$

Также возможно использование анизотропного приближения:

$$t_{hkl}^{j} = \exp\left(-2\pi^{2}\left(U_{11}^{j}h^{2}a^{*2} + U_{22}^{j}k^{2}b^{*2} + U_{33}^{j}l^{2}c^{*2} + 2U_{12}^{j}hka^{*}b^{*} + 2U_{13}^{j}hla^{*}c^{*} + 2U_{23}^{j}klb^{*}c^{*}\right)\right)$$

Эллипсоиды (P > 98%) для SiO₂

Ангармоническое приближение

2.4 Заселенность

Вероятность присутствия атома в заданной позиции может быть меньше 1

$$g_{j} < 1$$

- 1. Присутствие вакансий (Fe_{1-x}O).
- 2. Твердые растворы замещения (K_{1-x}Na_xCl)

3. Разупорядочение (C₆₀)

4. Существование разных структурных блоков (La₄($P_{1-x}[C_2]_x)_3$).

Тогда

 $\rho^{j}(\mathbf{r}) = \sum_{k} g_{j} \rho_{atom}^{k}(\mathbf{r}), \sum_{k} g_{k} \leq 1$

и рассеивающий фактор

$$F\rho^{j}(\mathbf{r}) = F\left(\sum_{k} g_{k}\rho_{atom}^{k}(\mathbf{r})\right) =$$
$$= \sum_{k} g_{k}F(\rho_{atom}^{k}(\mathbf{r})) = \sum_{k} g_{k}F_{atom}^{k}(\mathbf{q})$$

2.5 Аномальное рассеяние

Обычно для упрощения расчетов считают:

$$F_{atom}^{j}(\mathbf{q}) = f_{atom}\left(\frac{\sin\theta}{\lambda}\right) = c_0 + \sum_{k=1}^{k=4} a_k \exp\left(-b_k \frac{\sin\theta}{\lambda}\right)$$

Коэффициенты $c_0, a_1 - a_4, b_1 - b_4$: Int.Tab.Cryst., Vol.C

Очевидно, что f_{atom} не зависит от λ . В первом приближении это верно, однако необходимо учитывать «динамические» эффекты:

$$f_{atom}^{tot} = f_{atom}^{0} + \Delta f_{atom}' + i\Delta f_{atom}''$$

Т.н. f', f'' зависят от длины волны – максимальны вблизи края поглощения.
 Амплитуда аномального рассеяния ~ λ, ~ 1/Z

Summary

1. В кинематическом приближении протяженные системы рассеивают как

$$\hat{A} = F(\mathbf{q})\hat{A}_0, \quad F(\mathbf{q}) = \int_V \rho(\mathbf{r})e^{i\mathbf{q}\mathbf{r}}d\mathbf{r}$$

2. Для системы, состоящей из атомов $F(\mathbf{q}) = \sum_j e^{i\mathbf{q}\mathbf{r}_j}F_{atom}^{j}(\mathbf{q})$

3. Для 3D кристалла мы можем рассчитать положения максимумов:

$$\mathbf{k'} - \mathbf{k} = \mathbf{q}, \quad \mathbf{q} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$$
$$\frac{1}{d_{hkl}} = |\mathbf{q}|, \quad 2d\sin\theta = \lambda$$

4. И их амплитуду:

$$\hat{A}_{hkl} = \hat{A}_0 F_{hkl} = \hat{A}_0 \sum_j g_j t_j (\mathbf{q}_{hkl}) e^{2\pi i (hx_j + ky_j + lz_j)} F_{atom}^j (\mathbf{q}_{hkl})$$

5. Которая, разумеется, зависит от положения атомов внутри ячейки, теплового движения и заселенностей.

Комплексная амплитуда рассеянного излучения:

$$\hat{A}_{hkl} = \hat{A}_0 F_{hkl} = \hat{A}_0 \sum_j g_j t_j (\mathbf{q}_{hkl}) e^{2\pi i (hx_j + ky_j + lz_j)} F_{atom}^j (\mathbf{q}_{hkl})$$

*F*_{hkl} – характеризует перераспределение амплитуды рассеянного излучения в процессе интерференции.
 Этого уравнения было бы достаточно, если:

- 1. Пучок был бы монохроматическим с k = Const.
- 2. Точечный участок dV рассеивал бы как $\hat{A}_{\mathbf{q}} = \hat{A}_0 \rho(\mathbf{r})$
- Полностью бы выполнялись условия кинематического приближения
- 4. Мы работали бы с прозрачным для РИ бесконечным идеальным монокристаллом.
- 5. Мы работали бы на идеальном инструменте и

регистрировали δ-функции.

Сферический конь в вакууме 🥲

3.1 Структурная амплитуда + *Р*-фактор.

Очевидно, что

$$\boldsymbol{I}_{hkl} \propto \left|\boldsymbol{A}_{hkl}\right|^2 \propto \left|\boldsymbol{F}_{hkl}\right|^2$$

Точечный участок dV рассеивает как (Томсоновское рассеяние):

Кристалл-монохроматор сам поляризует излучение. В этом случае:

$$P = \frac{1 - K + K\cos^2 2\theta \cos^2 2\theta_M}{2}$$

К = 0.5 для неполяризованного РИ, К = 0 для нейтронов

3.1 Структурная амплитуда + *Р*-фактор. Порошковая дифрактограмма.

Тогда

$$I_{hkl} = kI_0 P \big| F_{hkl} \big|^2$$

(параллельный монохроматический пучок, непоглощающий бесконченый монокристалл, кинематическое приближение)

А что для порошковой дифрактограммы?

- Много разориентированных кристаллитов
- 2. Поглощение в образце
- 3. Разные геометрии

съемки

4. Неидеальный образец

+ неидеальный

инструмент

LPG = *Lorentz*+*Polarization*+*Geometry*

1. Лоренц-фактор №1 (L)

Плотность рефлексов на сферах падает с ростом 20. Вероятность пересечь сферу Эвальда:

$$I \propto w = \frac{R_E d_{eff}}{4\pi R_q^2} = \frac{2k \sin 2\theta / \cos \theta}{16\pi k^2 \sin^2 \theta} \propto \frac{1}{\sin \theta}$$

1. Лоренц-фактор №2 (G)

Окно детектора фиксированной длины пересекает кольца переменного радиуса

$$I_{reg} \propto \frac{I_0}{\sin 2\theta}$$

3.2 LPG-фактор.

При работе с прецизионными данными наличие монохроматора учитывать обязательно!

3.3 Абсорбция излучения в образце

Уравнения Гамильтона-Дарвина

$$\frac{\partial I_{s}}{\partial \mathbf{t}_{s}} = \mu I_{s}$$
$$\frac{\partial I_{D}}{\partial \mathbf{t}_{D}} = \mu I_{D} + \sigma I_{s}$$

Тогда:
$$I_S(\theta_1, z) = I_S^0 e^{-\frac{\mu z}{\sin \theta}}$$

Для вторичного пучка: $dI_D(\theta_2, z) = \sigma(2\theta)I_S^0 e^{-\frac{\mu z}{\sin \theta_1}} \times e^{-\frac{\mu z}{\sin \theta_2}} dl \to \sigma(2\theta)\frac{1}{\sin \theta}I_S^0 e^{-\frac{2\mu z}{\sin \theta}} dz$

Интегрируем по толщине образца (0 – *d*):

$$I_{D} = \sigma(2\theta)I_{S}^{0} \frac{1}{2\mu} \left(1 - e^{-\frac{2\mu d}{\sin\theta}}\right) \xrightarrow{d \to \infty} \sigma(2\theta)I_{S}^{0} \frac{1}{2\mu}$$
$$A = \frac{1}{2\mu}$$

3.4 Текстурирование

Для порошка обычно описывается феноменологически как:

 $T(hkl) \in [0,1]$

Подробнее? На специальной лекции!

3.5 Коэффициент экстинкции

Введение коэффициента экстинкции – попытка феноменологически учесть динамические явления (двойная дифракция)

$$E = E_B \sin^2 \theta + E_L \cos^2 \theta$$

Обычно обе компоненты рассматривают как функции единственного параметра *х*

Работа с коэффициентами экстинкции – норма для монокристального эксперимента, крайне редко необходима при работе с порошковыми данными

$$I_{hkl} = p_{hkl} A \times LPG \times T(hkl) \times E_{hkl} \times |F_{hkl}|^{2}$$

*p*_{*hkl*} - число симметрически эквивалентных рефлексов

Например, для кубического кристалла:

(1,0,0) (-1,0,0) (0,1,0) (0,-1,0) (0,0,1) (0,0,-1)

Фактор повторяемости $p_{001} = 6$

(1,1,0) (-1,-1,0)(-1,1,0) (1,-1,0)(0,1,1) (0,-1,-1)(0,-1,1) (0,1,-1)(1,0,1) (-1,0,-1)(-1,0,1) (1,0,-1)

Фактор повторяемости $p_{001} = 8$

Фактор повторяемости зависит не только от сингонии, но и от группы симметрии (точнее, Лауэ-класса) кристалла:

Тетрагональный кристалл, рефлекс (420) на дифрактограмме:

3.7 Профильная функция

$$I_{hkl} = p_{hkl} A \times LPG \times T(hkl) \times E_{hkl} \times |F_{hkl}|^{2}$$

Соответствует набору δ-функций в реальном пространстве

