Лекция 1 из 3

## С.В.Абрамов

## Масс-спектрометрия: краткая история, общие принципы и современная аппаратура



Московский государственный университет имени М.В.Ломоносова Химический факультет



# Лауреаты Нобелевской премии за разработки в области масс-спектрометрии

#### 2002 год (химия)

John B. Fenn Virginia Commonwealth University, Richmond, USA Koichi Tanaka Shimadzu Corp., Kyoto, Japan

За разработку мягких методов десорбции/ионизации для массспектрометрического анализа биологических макромолекул

#### 1989 год (физика)

**Wolfgang Paul** University of Bonn, Bonn, Federal Republic of Germany **Hans G. Dehmelt** University of Washington Seattle, WA, USA

За разработку ионной ловушки

#### 1922 год (химия)

Francis William Aston University of Cambridge Cambridge, United Kingdom

За открытие с помощью своего масс-спектрографа изотопов и большого числа нерадиоактивных элементов

#### 1906 год (физика)

Joseph John Thomson University of Cambridge, Cambridge, United Kingdom

За признание важности его теоретических и экспериментальных исследований электропроводимости газов













## Методы ионизации

| EI        | до 1912 |
|-----------|---------|
| CI        | 1966    |
| APCI      | 1974    |
| FT-ICR    | 1974    |
| PD        | 1976    |
| ICP       | 1980    |
| FAB       | 1981    |
| TSP       | 1983    |
| MALDI     | 1987    |
| ESI       | 1988    |
| Наноспрей | 1994    |

## Масс-анализаторы

| TOF                 | 1946 концепция<br>1948 реальная конструкция<br>1955 ключевые улучшения конструкции<br>1958 коммерческий прибор<br>1972 рефлектрон |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| ICR                 | 1949 первое применение                                                                                                            |
| Двойная фокусировка | 1935 концепция<br>1952 разработка<br>1957 коммерческий прибор                                                                     |
| Квадрупольный анали | затор 1953 первое описание<br>1968 коммерческий прибор                                                                            |
| GC/MS<br>Orbitrap   | 1975 коммерческий прибор<br>2005 коммерческий прибор                                                                              |

## Разрешение прибора

#### m/dm

| 1913 | 13      | Thompson |
|------|---------|----------|
| 1918 | 100     | Dempster |
| 1919 | 130     | Aston    |
| 1937 | 2000    | Aston    |
| 1998 | 8000000 | Marshall |

#### Типичный масс-спектр низкого разрешения (В)



## Масс-спектр дублета «тритий/гелий-3» (FT-ICR)



## Для чего нам нужно большое разрешение?

- <u>M =28</u>:
- N<sub>2</sub> 28.0062
- CHO 27.9949
- CH<sub>2</sub>N 28.0181
- $C_2H_4$  28.0313
- Si 27.9769
- <u>M =92</u>:
- N<sub>2</sub>O<sub>4</sub> 91.9858
- CH<sub>2</sub>NO<sub>4</sub> 91.9983
- C<sub>7</sub>H<sub>8</sub> 92.0626
- Mo 91.9068





## Основные понятия

- Вещество форма материи, состоящая из кварков и лептонов (ядер и электронов)
- Ион заряженная частица вещества
- Масс-спектрометрия метод исследования вещества при помощи разделения ионов по отношениям массы к заряду (*m/z*)
- Масс-спектр зависимость интенсивности ионного сигнала от *m/z* (график или таблица)
- Масс-спектрометр прибор для получения масс-спектра

## масс-спектра

- 5) регистрация ионных фракций на детекторе с получением
- 4) разделение ионов по отношению m/z

## ионного пучка

- 3) формирование моноэнергетического
- ввод пробы
   ионизация

# Принцип масс-спектрометрии

## Масс-спектрометр – вакуумный прибор



При недостаточном вакууме ионный пучок существовать не может. Ионы рассеиваются на молекулах остаточных газов. Длина свободного пробега I»kT/ps.

## Что происходит до масс-анализатора?



 $E_{3n} = qU; q = ez$ , где  $E_{3n}$  – энергия работы электростатических сил, q – заряд иона, e – элементарный заряд, z – число элементарных зарядов у иона;  $U = \text{const} \triangleright E_{3n} = \text{const}$ 

 $E_{\kappa u \mu} = E_{3 n}; m V^2/2 = ezU$ , где  $E_{\kappa u \mu}$  – кинетическая энергия иона, V – скорость иона; U=const  $\triangleright E_{\kappa u \mu}$ =const (формируется моноэнергетический пучок ионов)



## Устройства для создания вакуума

Вакуумные насосы





250 м<sup>3</sup>/ч 10<sup>-9</sup> атм





250 м<sup>3</sup>/ч 10<sup>-9</sup> атм







250 м<sup>3</sup>/ч, 10<sup>-13</sup> атм

## Интерфейс пользователя



### Масс-анализаторы

- § Магнитный сектор В
- § Времяпролетный TOF (time-of-flight)
- § Линейный квадруполь Q (quadrupole)
- § Квадрупольная ионная ловушка QIT (ion trap)
- § Ион-циклотронного резонанса ICR, FT-ICR

## Движение зарядов в магнитном поле





 $F_L = q[V \times B]$ 

## Магнитный масс-анализатор (В)





Демпстер (сектор 180°)

## Двойная фокусировка



## **GC-MS с магнитным анализатором**



## Ионный источник EI/CI типа Нира



Аналоги собирающих и рассеивающих линз

Ионно-

оптические

устройства





## Времяпролетный масс-анализатор (TOF)

1. 
$$E_{KUH} = mV^{2}/2$$
  
2.  $E_{3\pi} = ezU$   
3.  $E_{KUH} = E_{3\pi}$   
4.  $t = s/V$   
 $t = s\sqrt{\frac{m}{2ezU}}$ 



## ТОГ – линейный режим и рефлектрон



Б.А.Мамырин

## Масс-спектры ТО**F**



#### Влияние остаточного вакуума на масс-спектр (MALDI-TOF, PEG-400)



#### **ТОF-рефлектор с ортогональным вводом**



А.Ф.Додонов

#### Схема газового хроматомасс-спектрометра (GC-MS) Leco Pegasus III с EI и TOF



#### Времяпролетный анализатор (TOF)

- имеет более высокую чувствительность по сравнению со сканирующими приборами;

- имеет очень высокую скорость записи спектра (несколько сот спектров в секунду);

- имеет практически неограниченный диапазон масс;

- имеет разрешающую способность более 10000;
- может работать с самыми разнообразными источниками ионов;

- является идеальным вторым анализатором для работы в режиме тандемной масс-спектрометрии;

- относительно небольшие размеры.



Противоположные стержни электрически соединены и находятся под напряжением, складывающимся из компоненты постоянного тока U и радиочастотной компоненты  $V_0$ cos $\omega$ t. Вторая пара стержней имеет равную по величине, но противоположную по знаку компоненту, постоянного тока, а фаза радиочастотной компоненты сдвинута на 180°.



При каждой комбинации RF/DC потенциалов через квадруполь проходят только ионы с определённым m/z (резонансные ионы)

#### Теория квадрупольного анализатора

Уравнения движения (уравнения Матье):

$$\frac{d^2x}{d\tau^2} + (a_x + 2q_x \cos 2\tau)x = 0$$
$$\frac{d^2y}{d\tau^2} + (a_y + 2q_y \cos 2\tau)y = 0$$

$$a_x = -a_y = \frac{4eU}{m_i r_0^2 \omega^2}, \quad q_x = -q_y = \frac{2eV}{m_i r_0^2 \omega^2}, \quad \tau = \frac{\omega t}{2}$$



#### Движение резонансных ионов в квадруполе



## Интерфейс ESI/APCI (HP-Agilent)



## Тандемная масс-спектрометрия



## LC-MS с тандемным масс-спектрометром



## Квадрупольный анализатор (Q)

- Квадруполь легко управляется компьютером
- Имеет хороший динамический диапазон (10<sup>5</sup>)
- Стыкуется со всеми системами ввода
- Способен без модифицирования разделять и положительные, и отрицательные ионы
- Быстрота сканирования (полный спектр за 5 секунд)
- Небольшие размеры
- Дешевизна
- Возможность работы при повышенном (до 5 ′ 10<sup>-5</sup> мм рт.ст.) давлении

## Квадрупольная ионная ловушка (QIT)



## Движение ионов в ионной ловушке





## Ионная ловушка (QIT)

- Режим тандемной масс-спектрометрии.
- Возможность достижения разрешающей способности 25000
  Небольшие размеры
- Самая низкая стоимость прибора
- Возможность расширения диапазона регистрируемых масс в режиме резонансного извлечения ионов до десятков тысяч

К недостаткам можно отнести протекание в ловушке ионномолекулярных реакций, что приводит к искажениям стандартного масс-спектра.

## Ион-циклотронный резонанс

Независимо от начальной скорости движения (V) ионы в однородном магнитном поле (B) двигаются с одинаковой угловой частотой (w<sub>c</sub>) (частотой вращения, циклотронной частотой)

$$R = \frac{mV}{qB}; V = RW_c; W_c = \frac{qB}{m}$$

$$V = RW_c; W_c = \frac{qB}{m}$$

$$B = 7 T, m/z = 1500, z = 1$$

$$W_c = 71.6 \text{ kFu}$$

## Схема простейшей ячейки ИЦР



1,2 — боковые пластины, 3,5 — торцевые пластины, 4 — верхняя пластина, облучение двойного резонанса, 6 — нижняя пластина, пороговый генератор

# Последовательное возбуждение и регистрация ионов



## Сигнал FT-ICR



## **Масс-спектрометр ESI-ICR**



# Масс-спектрометр ион-циклотронного резонанса с преобразованием Фурье (FT-ICR)



Анализатор ион-циклотронного резонанса

§ Высокое разрешение m/Dm=10<sup>6</sup>

- § Возможность точного определения масс (до 10<sup>-4</sup>)
- § Высокая чувствительность (до 14 ионов)
- § Возможность тандемной масс-спектрометрии
- § Возможность изучения кинетики реакций
- § Высокая стоимость

## Ионная ловушка Orbitrap



Решает 80% задач FT-ICR без применения сверхпроводящего магнита!

## Детекторы

- § Электрометр (коллектор ионов) Faraday Cup
- § Вторично-электронный умножитель (ВЭУ) SEM
- § Канальный ВЭУ СЕМ
- § Микроканальная пластина МСР
- § ВЭУ с конверсионным динодом

## Электрометр (коллектор ионов)



Динатронный эффект

I от 10<sup>-18</sup> А (6 частиц в секунду)

## Динодный вторично-электронный умножитель



#### Зависимость коэффициента умножения от массы иона

# Канальный вторично-электронный умножитель





## Микроканальные пластины





## ВЭУ с конверсионным динодом



## Детектор фокальной плоскости



#### Использованные источники информации

http://nobelprize.org http://www.edwardsvacuum.com http://www.bardenbearings.com http://www.adixen.com http://www.varianinc.com http://www.varianinc.com http://www.chem.agilent.com http://www.leco.com http://www.leco.com J.H.Gross Mass Spectrometry, Springer, 2004 Материалы Е.Н.Николаева Материалы А.В.Кепмана Интернет

# Спасибо за внимание!