Различные механизмы формирования основного состояния в низкоразмерных металлооксидах

 $CuGeO_3$ – спин-Пайерлс NaV₂O₅ – зарядовое упорядочение NaTiSi₂O₆ – орбитальное упорядочение

 $(VO)_2P_2O_7$ – альтернированные цепочки SrCu₂O₃ – спиновая лестница с двумя ножками Y₂BaNiO₅ – S = 1 – цепочка Холдейна SrCuO₂ – S = ½ - антиферромагнетик при T < 5 K

Квази-одномерные магнитные системы

Спин-Пайерлсовский магнетик CuGeO₃

<u>1993</u> - Hase, Terasaki, Uchinokura

Кристаллическая структура CuGeO₃

S= $\frac{1}{2}$ переход спин-Пайерлса $\Delta \neq 0$

CuGeO₃, результаты исследования ЯМР и дифракции нейтронов

CuGeO₃, фазовая диаграмма, Фарадеевское вращение плоскости поляризации

Механизмом формирования немагнитного (синглетного) основного состояния в CuGeO₃ является магнитоупругое взаимодействие в изначально нестабильной цепочке спинов S = ¹/₂

Орбитальное упорядочение в NaTiSi₂O₆

<u>2002</u> – E. Ninomiya, M. Isobe, Yu. Ueda, A.Vasiliev

Кристаллическая структура пироксенов $(Li,Na)M(Si,Ge)_2O_6$ (M = Sc, Ti, V, Cr)

Магнитная восприимчивость ванадиевых пироксенов

Магнитная восприимчивость хромовых пироксенов

Теплоемкость хромовых пироксенов

Магнитная восприимчивость NaTiSi₂O₆

Моделирование восприимчивости

Рентгеновские спектры в NaTiSi $_2O_6$

• Пироксены на базе ванадия в основном состоянии являются антиферромагнетиками.

 Пироксены на базе хрома в основном состоянии могут быть антиферромагнетиками или ферромагнетиками.

 Немагнитное основное состояние в пироксенах на базе титана формируется в результате Ян-Теллеровского искажения кристаллической решетки и, как следствие, орбитального упорядочения.